Game problems of approach for quasilinear systems of general form
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 273-287 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study a conflict-controlled process of the approach of a trajectory to a cylindrical terminal set. The problem statement encompasses a wide range of quasilinear functional-differential systems.We use the technique of set-valued mappings and their selections to derive sufficient conditions for the game termination in a finite time. The methodology used is close to the scheme that involves the time of the first absorption. By way of illustration, quasilinear integro-differential games are examined. For this purpose, their solutions are presented in the form of an analog of the Cauchy formula. The calculations are performed for the case of a system with a simple matrix; the control sets of the players are balls centered at the origin and the terminal set is a linear subspace. Depending on the relations between the initial state of the system and the parameters of the process, sufficient conditions for the game termination are derived. An explicit form of the guaranteed time is found in one specific case.
Keywords: conflict-controlled process, selection of a set-valued mapping, Aumann's integral, support function, integro-differential equation.
@article{TIMM_2018_24_1_a23,
     author = {A. A. Chikrii and G. Ts. Chikrii},
     title = {Game problems of approach for quasilinear systems of general form},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {273--287},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a23/}
}
TY  - JOUR
AU  - A. A. Chikrii
AU  - G. Ts. Chikrii
TI  - Game problems of approach for quasilinear systems of general form
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 273
EP  - 287
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a23/
LA  - ru
ID  - TIMM_2018_24_1_a23
ER  - 
%0 Journal Article
%A A. A. Chikrii
%A G. Ts. Chikrii
%T Game problems of approach for quasilinear systems of general form
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 273-287
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a23/
%G ru
%F TIMM_2018_24_1_a23
A. A. Chikrii; G. Ts. Chikrii. Game problems of approach for quasilinear systems of general form. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 273-287. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a23/

[1] Krasovskii N.N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[2] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[3] Pshenichnyi B.N., “Lineinye differentsialnye igry”, Avtomatika i telemekhanika, 1968, no. 1, 65–78

[4] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR

[5] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, Basel, 1995, 625 pp. | MR

[6] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 456 pp. | MR

[7] Chentsov A.G., Morina S.J., Extensions and relaxations, Kluwer Acad. Publ., Boston; London; Dordrecht, 2002, 408 pp. | DOI | MR

[8] Pontryagin L.S., Izbrannye nauchnye trudy, v. 2, Nauka, M., 1988, 576 pp. | MR

[9] Pshenichnyi B.N., “Struktura differentsialnykh igr”, Dokl. AN SSSR, 184:2 (1969), 285–287

[10] Hajek O., Pursuit games, v. 12, Acad. Press, N Y, 1975, 266 pp. | MR

[11] Chikrii A.A., Conflict-controlled processes, Springer Science and Busines Media, Boston; London; Dordrecht, 2013, 424 pp. | MR

[12] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 470 pp.

[13] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhäuser, Boston: Basel; Berlin, 1990, 461 pp. | MR

[14] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988, 512 pp. | MR

[15] Natanson I.P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR

[16] Mikhlin S.T., Lektsii po lineinym integralnym uravneniyam, Fizmatgiz, M., 1959, 304 pp. | MR

[17] Smirnov V.I., Kurs vysshei matematiki, v. 4, Nauka, M., 1974, 236 pp. | MR