Bitopological spaces of ultrafilters and maximal linked systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 257-272 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Issues of the structure of spaces of ultrafilters and maximal linked systems are studied. We consider a widely understood measurable space (a $\pi$-system with zero and one) defined as follows: we fix a nonempty family of subsets of a given set closed under finite intersections and containing the set itself ("one") and the nonempty set ("zero"). Ultrafilters (maximal filters) and maximal linked systems are constructed on this space. Each of the obtained spaces is equipped with a pair of comparable topologies. The resulting bitopological spaces turn out to be consistent in the following sense: each space of ultrafilters is a subspace of the corresponding space of maximal linked systems. Moreover, the space of maximal linked systems with Wallman-type topology is supercompact and, in particular, compact. Possible variants of the $\pi$-systems are lattices, semialgebras and algebras of sets, topologies, and families of closed sets of topological spaces.
Keywords: maximal linked system, topological space, ultrafilter.
@article{TIMM_2018_24_1_a22,
     author = {A. G. Chentsov},
     title = {Bitopological spaces of ultrafilters and maximal linked systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {257--272},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a22/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Bitopological spaces of ultrafilters and maximal linked systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 257
EP  - 272
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a22/
LA  - ru
ID  - TIMM_2018_24_1_a22
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Bitopological spaces of ultrafilters and maximal linked systems
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 257-272
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a22/
%G ru
%F TIMM_2018_24_1_a22
A. G. Chentsov. Bitopological spaces of ultrafilters and maximal linked systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 257-272. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a22/

[1] Chentsov A. G., “Ultrafiltry i maksimalnye stseplennye sistemy mnozhestv”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 27:3 (2017), 365–388 | DOI | MR

[2] Chentsov A. G., “Superrasshirenie kak bitopologicheskoe prostranstvo”, Izv. In-ta matematiki i informatiki UdGU, 49 (2017), 55–79 | DOI

[3] Chentsov A.G., “Some representations connected with ultrafilters and maximal linked systems”, Ural Math. J., 3:2 (2017), 100–121 | DOI

[4] de Groot. J., “Superextensions and supercompactness”, Proc. I. Intern. Symp. on extension theory of topological structures and its applications, VEB Deutscher Verlag Wis., Berlin, 1969, 89–90

[5] Mill J. van., Supercompactness and Wallman spaces, Amsterdam. Math. Center Tract, 85, Amsterdam, 1977, 238 pp. | MR

[6] Strok M., Szymanski A., “Compact metric spaces have binary subbases”, Fund. Math., 89:1 (1975), 81–91 | DOI | MR

[7] Fedorchuk V.V., Filippov V.V., Obschaya topologiya. Osnovnye konstruktsii, Fizmatlit, M., 2006, 336 pp.

[8] Bulinskii A.V., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 402 pp.

[9] Dvalishvili B.P., Bitopological spaces: theory, relations with generalized algebraic structures, and applications, Ser. Nort-Holland Mathematics Studies, 199, Elsevier, Amsterdam; Boston; Heidelberg; London, N Y, 2005, 422 pp. | MR

[10] Gryzlov A.A., Bastrykov E.S., Golovastov R.A., “O tochkakh odnogo bikompaktnogo rasshireniya N”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 3, 10–17 | DOI

[11] Gryzlov A.A., Golovastov R.A., “O prostranstvakh Stouna nekotorykh bulevykh algebr”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2013, no. 1, 11–16 | DOI

[12] Golovastov R.A., “O prostranstve Stouna odnoi bulevoi algebry”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2012, no. 3, 19–24 | DOI

[13] Chentsov A. G., “Nekotorye svoistva ultrafiltrov, svyazannye s konstruktsiyami rasshirenii”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2014, no. 1, 87–101 | DOI

[14] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[15] Chentsov A. G., “K voprosu o soblyudenii ogranichenii v klasse obobschennykh elementov”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2014, no. 3, 90–109 | DOI

[16] Chentsov A. G., “Ultrafiltry izmerimykh prostranstv kak obobschennye resheniya v abstraktnykh zadachakh o dostizhimosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:1 (2011), 268–293

[17] Chentsov A. G., Pytkeev E. G., “Nekotorye topologicheskie konstruktsii rasshirenii abstraktnykh zadach o dostizhimosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 312–329

[18] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp. | MR