Voir la notice du chapitre de livre
@article{TIMM_2018_24_1_a21,
author = {D. V. Khlopin},
title = {On necessary limit gradients in control problems with infinite horizon},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {247--256},
year = {2018},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a21/}
}
D. V. Khlopin. On necessary limit gradients in control problems with infinite horizon. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 247-256. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a21/
[1] Halkin H., “Necessary conditions for optimal control problems with infinite horizons”, Econometrica, 42 (1974), 267–272 | DOI | MR
[2] Aseev S.M., Kryazhimskii A.V., “The Pontryagin Maximum Principle and problems of optimal economic growth”, Proc. Steklov Inst. Math., 257 (2007), 1–255 | DOI | MR
[3] Aseev S.M., Kryazhimskii A.V., Besov K., “Infinite-horizon optimal control problems in economics”, Russ. Math. Surv., 67 (2012), 195–253 | DOI | MR
[4] Aseev S.M., Veliov V., “Needle variations in infinite-horizon optimal control”, Variational and optimal control problems on unbounded domains, eds. G. Wolansky, A.J. Zaslavski, AMS, Providence, 2014, 1–17 | MR
[5] Khlopin D.V., “Necessity of vanishing shadow price in infinite horizon control problems”, J. Dyn. Con. Sys., 19:4 (2013), 519–552 | DOI | MR
[6] Khlopin D.V., “Necessity of limiting co-state arc in Bolza-type infinite horizon problem”, Optimization, 64:11 (2015), 2417–2440 | DOI | MR
[7] Tauchnitz N., “The pontryagin maximum principle for nonlinear optimal control problems with infinite horizon”, J. Optim. Theory Appl., 167:1 (2015), 27–48 | DOI | MR
[8] Khlopin D., “On transversality condition for overtaking optimality in infinite horizon control problem”, [e-resource], 2017, 9 pp., arXiv: 1704.03053v1
[9] Clarke F., Necessary conditions in dynamic optimization, AMS, Providence, 2005, 113 pp. | MR
[10] Carlson D.A., “Uniformly overtaking and weakly overtaking optimal solutions in infinite-horizon optimal control: when optimal solutions are agreeable”, J. Optim. Theory Appl., 64:1 (1990), 55–69 | DOI | MR
[11] Mordukhovich B.S., Variational analysis and generalized differentiation I. Basic theory, Springer-Verlag, Berlin, 2006, 579 pp. | MR
[12] Cannarsa P., Frankowska H., “Value function, relaxation, and transversality conditions in infinite horizon optimal control”, J. Math. Anal. Appl., 457 (2018), 1188–1217 | DOI | MR
[13] Khlopin D.V., “On Lipschitz continuity of value functions for infinite horizon problem”, Pure Appl. Funct. Anal., 2:3 (2017), 535–552 | MR
[14] Sagara N., “Value functions and transversality conditions for infinite-horizon optimal control problems”, Set-Valued Var. Anal., 18 (2010), 1–28 | DOI | MR
[15] Aubin J., Clarke F., “Shadow prices and duality for a class of optimal control problems”, SIAM J. Control Optim., 17 (1979), 567–586 | DOI | MR
[16] Belyakov A.O., “Necessary conditions for infinite horizon optimal control problems revisited”, [e-resource], 2017, 19 pp., arXiv: 1512.01206
[17] Khlopin D.V., “On boundary conditions at infinity for infinite horizon control problem”, IEEE Xplore, Constructive Nonsmooth Analysis and Related Topics, dedicated to the memory of V.F. Demyanov, CNSA, 2017, 1–3 | DOI
[18] Bogusz, D., “On the existence of a classical optimal solution and of an almost strongly optimal solution for an infinite-horizon control problem”, J. Optim. Theory Appl., 156 (2013), 650–682 | DOI | MR
[19] Ledyaev Y.S., Treiman J.S., “Sub-and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions”, Russ. Math. Surv., 67 (2012), 345–373 | DOI | MR