On an optimal control problem with discontinuous integrand
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 15-26
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider an optimal control problem for an autonomous differential inclusion with free terminal time and a mixed functional which contains the characteristic function of a given open set $M\subset\mathbb{R}^n$ in the integral term. The statement of the problem weakens the statement of the classical optimal control problem with state constraints to the case when the presence of admissible trajectories of the system in the set $M$ is physically allowed but unfavorable due to safety or instability reasons. Using an approximation approach, necessary conditions for the optimality of an admissible trajectory are obtained in the form of Clarke's Hamiltonian inclusion. The result involves a nonstandard stationarity condition for the Hamiltonian. As in the case of the problem with a state constraint, the obtained necessary optimality conditions may degenerate.Conditions guaranteeing their nondegeneracy and pointwise nontriviality are presented. The results obtained extend the author's previous results to the case of a problem with free terminal time and more general functional.
Keywords: risk zone, state constraints, optimal control, Hamiltonian inclusion, Pontryagin maximum principle, nondegeneracy conditions.
@article{TIMM_2018_24_1_a2,
     author = {S. M. Aseev},
     title = {On an optimal control problem with discontinuous integrand},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {15--26},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a2/}
}
TY  - JOUR
AU  - S. M. Aseev
TI  - On an optimal control problem with discontinuous integrand
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 15
EP  - 26
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a2/
LA  - ru
ID  - TIMM_2018_24_1_a2
ER  - 
%0 Journal Article
%A S. M. Aseev
%T On an optimal control problem with discontinuous integrand
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 15-26
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a2/
%G ru
%F TIMM_2018_24_1_a2
S. M. Aseev. On an optimal control problem with discontinuous integrand. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 15-26. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a2/

[1] Arutyunov A.V., “Vozmuscheniya ekstremalnykh zadach s ogranicheniyami i neobkhodimye usloviya optimalnosti”, Mat. analiz. Itogi nauki i tekhniki, v. 27, VINITI, M., 1989, 147–235

[2] Arutyunov A.V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997, 254 pp. | MR

[3] Aseev S.M., “Optimizatsiya dinamiki upravlyaemoi sistemy pri nalichii faktorov riska”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23:1 (2017), 27–42 | DOI | MR

[4] Aseev S.M., Smirnov A.I., “Printsip maksimuma Pontryagina dlya zadachi optimalnogo prokhozhdeniya cherez zadannuyu oblast”, Dokl. RAN, 395:5 (2004), 583–585 | MR

[5] Aseev S.M., Smirnov A.I., “Neobkhodimye usloviya optimalnosti pervogo poryadka dlya zadachi optimalnogo prokhozhdeniya cherez zadannuyu oblast”, Nelineinaya dinamika i upravlenie, cb. statei, v. 4, Fizmatlit, M., 2004, 179–204

[6] Ioffe A.D., Tikhomirov V.M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 481 pp. | MR

[7] Arutyunov, A.V., Karamzin, D.Yu., Pereira, F.L., “The maximum principle for optimal control problems with state constraints by R.V. Gamkrelidze: revisited”, J. Optim. Theory Appl., 149:3 (2011), 474–493 | DOI | MR

[8] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR

[9] Mordukhovich B.Sh., “Printsip maksimuma v zadachakh optimalnogo bystrodeistviya s negladkimi ogranicheniyami”, Prikl. matematika i mekhanika, 40:6 (1976), 1014–1023 | MR

[10] Mordukhovich B.Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988, 360 pp. | MR

[11] Natanson I.P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR

[12] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 393 pp. | MR

[13] Pshenichnyi B.N., Ochilov S., “O zadache optimalnogo prokhozhdeniya cherez zadannuyu oblast”, Kibernetika i vychisl. tekhnika, 99 (1993), 3–8

[14] Pshenichnyi B.N., Ochilov S., “Ob odnoi spetsialnoi zadache optimalnogo bystrodeistviya”, Kibernetika i vychisl. tekhnika, 101 (1994), 11–15

[15] Smirnov A.I., “Neobkhodimye usloviya optimalnosti dlya odnogo klassa zadach optimalnogo upravleniya s razryvnym integrantom”, Tr. MIAN, 262, 2008, 222–239

[16] Arutyunov A.V., Aseev S.M., “Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints”, SIAM J. Control Optim., 35:3 (1997), 930–952 | DOI | MR

[17] Aseev S.M., “Methods of regularization in nonsmooth problems of dynamic optimization”, J. Math. Sci., 94:3 (1999), 1366–1393 | DOI | MR

[18] Cesari L., Optimization - theory and applications. Problems with ordinary differential equations, Springer, N Y, 1983, 542 pp. | DOI | MR

[19] Ferreira, M.M.A., Vinter, R.B., “When is the maximum principle for state constrained problems nondegenerate?”, J. Math. Anal. Appl., 187:2 (1994), 438–467 | DOI | MR

[20] Fontes F.A.C.C., Frankowska H., “Normality and nondegeneracy for optimal control problems with state constraints”, J. Optim. Theory Appl., 166:1 (2015), 115–136 | DOI | MR