Voir la notice du chapitre de livre
@article{TIMM_2018_24_1_a2,
author = {S. M. Aseev},
title = {On an optimal control problem with discontinuous integrand},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {15--26},
year = {2018},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a2/}
}
S. M. Aseev. On an optimal control problem with discontinuous integrand. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 15-26. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a2/
[1] Arutyunov A.V., “Vozmuscheniya ekstremalnykh zadach s ogranicheniyami i neobkhodimye usloviya optimalnosti”, Mat. analiz. Itogi nauki i tekhniki, v. 27, VINITI, M., 1989, 147–235
[2] Arutyunov A.V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997, 254 pp. | MR
[3] Aseev S.M., “Optimizatsiya dinamiki upravlyaemoi sistemy pri nalichii faktorov riska”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23:1 (2017), 27–42 | DOI | MR
[4] Aseev S.M., Smirnov A.I., “Printsip maksimuma Pontryagina dlya zadachi optimalnogo prokhozhdeniya cherez zadannuyu oblast”, Dokl. RAN, 395:5 (2004), 583–585 | MR
[5] Aseev S.M., Smirnov A.I., “Neobkhodimye usloviya optimalnosti pervogo poryadka dlya zadachi optimalnogo prokhozhdeniya cherez zadannuyu oblast”, Nelineinaya dinamika i upravlenie, cb. statei, v. 4, Fizmatlit, M., 2004, 179–204
[6] Ioffe A.D., Tikhomirov V.M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 481 pp. | MR
[7] Arutyunov, A.V., Karamzin, D.Yu., Pereira, F.L., “The maximum principle for optimal control problems with state constraints by R.V. Gamkrelidze: revisited”, J. Optim. Theory Appl., 149:3 (2011), 474–493 | DOI | MR
[8] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR
[9] Mordukhovich B.Sh., “Printsip maksimuma v zadachakh optimalnogo bystrodeistviya s negladkimi ogranicheniyami”, Prikl. matematika i mekhanika, 40:6 (1976), 1014–1023 | MR
[10] Mordukhovich B.Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988, 360 pp. | MR
[11] Natanson I.P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR
[12] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 393 pp. | MR
[13] Pshenichnyi B.N., Ochilov S., “O zadache optimalnogo prokhozhdeniya cherez zadannuyu oblast”, Kibernetika i vychisl. tekhnika, 99 (1993), 3–8
[14] Pshenichnyi B.N., Ochilov S., “Ob odnoi spetsialnoi zadache optimalnogo bystrodeistviya”, Kibernetika i vychisl. tekhnika, 101 (1994), 11–15
[15] Smirnov A.I., “Neobkhodimye usloviya optimalnosti dlya odnogo klassa zadach optimalnogo upravleniya s razryvnym integrantom”, Tr. MIAN, 262, 2008, 222–239
[16] Arutyunov A.V., Aseev S.M., “Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints”, SIAM J. Control Optim., 35:3 (1997), 930–952 | DOI | MR
[17] Aseev S.M., “Methods of regularization in nonsmooth problems of dynamic optimization”, J. Math. Sci., 94:3 (1999), 1366–1393 | DOI | MR
[18] Cesari L., Optimization - theory and applications. Problems with ordinary differential equations, Springer, N Y, 1983, 542 pp. | DOI | MR
[19] Ferreira, M.M.A., Vinter, R.B., “When is the maximum principle for state constrained problems nondegenerate?”, J. Math. Anal. Appl., 187:2 (1994), 438–467 | DOI | MR
[20] Fontes F.A.C.C., Frankowska H., “Normality and nondegeneracy for optimal control problems with state constraints”, J. Optim. Theory Appl., 166:1 (2015), 115–136 | DOI | MR