Keywords: Minkowski sum, convex hull
@article{TIMM_2018_24_1_a19,
author = {V. N. Ushakov and A. A. Ershov},
title = {An estimate of the {Hausdorff} distance between a set and its convex hull in {Euclidean} spaces of small dimension},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {223--235},
year = {2018},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a19/}
}
TY - JOUR AU - V. N. Ushakov AU - A. A. Ershov TI - An estimate of the Hausdorff distance between a set and its convex hull in Euclidean spaces of small dimension JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 223 EP - 235 VL - 24 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a19/ LA - ru ID - TIMM_2018_24_1_a19 ER -
%0 Journal Article %A V. N. Ushakov %A A. A. Ershov %T An estimate of the Hausdorff distance between a set and its convex hull in Euclidean spaces of small dimension %J Trudy Instituta matematiki i mehaniki %D 2018 %P 223-235 %V 24 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a19/ %G ru %F TIMM_2018_24_1_a19
V. N. Ushakov; A. A. Ershov. An estimate of the Hausdorff distance between a set and its convex hull in Euclidean spaces of small dimension. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 223-235. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a19/
[1] Ushakov V.N., Uspenskii A.A., Fomin A.N., $\alpha$-mnozhestva i ikh svoistva, Institut matematiki i mekhaniki UrO RAN, Ekaterinburg, 2004, 62 pp.
[2] Ushakov V.N., Uspenskii A.A., “$\alpha$-mnozhestva v konechnomernykh evklidovykh prostranstvakh i ikh svoistva”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyut. nauki, 26:1 (2016), 95–120 | DOI | MR
[3] Polovinkin E.S., Balashov M.V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2007, 438 pp.
[4] Yaglom I.M., Boltyanskii V.G., Vypuklye figury, GTTI, M., 1951, 344 pp. | MR
[5] Starr R.M., “Quasi-equilibria in markets with non-convex preferences”, Econometrica, 37:1 (1969), 25–38 | DOI
[6] Garkavi A.L., “O chebyshëvskom tsentre i vypukloi obolochke mnozhestva”, Uspekhi mat. nauk, 19:6 (1964), 139–145 | MR
[7] Bugrov Ya.S., Nikolskii S.M., Vysshaya matematika, Ucheb. dlya vuzov: v 3 t., v. 3, Differentsialnye uravneniya. Kratnye integraly. Ryady. Funktsii kompleksnogo peremennogo, Drofa, M., 2004, 512 pp. | MR
[8] Preparata F., Feimos M., Vychislitelnaya geometriya: Vvedenie, Mir, M., 1989, 478 pp. | MR