Impulse differential game with a mixed constraint on the choice of the control of the first player
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 209-222 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a linear differential game in which the first player can choose both an impulse control and a control subject to a geometric constraint. The first player can use a prescribed amount of resource to form the impulse control. Portions of this amount can be separated at certain times, thus producing “instantaneous” changes of the state vector and complicating the problem. The control of the second player is subject to a geometric constraint. The vectograms of the players are described by the same ball with different time-dependent radii. The terminal set is a ball with fixed radius. The aim of the first player is to bring the state vector to the terminal set at a given time. The aim of the second player is opposite. Necessary and sufficient conditions for meeting the terminal set at the given time are found, and the corresponding controls of the players guaranteeing the achievement of their goals are constructed. A solution of an example illustrating the theory is given.
Keywords: differential game, control, impulse control, capture.
@article{TIMM_2018_24_1_a18,
     author = {V. I. Ukhobotov and I. V. Izmestyev},
     title = {Impulse differential game with a mixed constraint on the choice of the control of the first player},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {209--222},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a18/}
}
TY  - JOUR
AU  - V. I. Ukhobotov
AU  - I. V. Izmestyev
TI  - Impulse differential game with a mixed constraint on the choice of the control of the first player
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 209
EP  - 222
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a18/
LA  - ru
ID  - TIMM_2018_24_1_a18
ER  - 
%0 Journal Article
%A V. I. Ukhobotov
%A I. V. Izmestyev
%T Impulse differential game with a mixed constraint on the choice of the control of the first player
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 209-222
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a18/
%G ru
%F TIMM_2018_24_1_a18
V. I. Ukhobotov; I. V. Izmestyev. Impulse differential game with a mixed constraint on the choice of the control of the first player. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 209-222. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a18/

[1] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp. | MR

[2] Krasovskii N.N., “Ob odnoi zadache presledovaniya”, Prikl. matematika i mekhanika, 27:2 (1963), 244–254

[3] Krasovskii N.N., Repin Yu.M., Tretyakov V.E., “O nekotorykh igrovykh situatsiyakh v teorii upravlyaemykh sistem”, Izv. AN SSSR. Tekhnicheskaya kibernetika, 1965, no. 4, 3–23

[4] Krasovskii N.N., Tretyakov V.E., “K zadache o presledovanii v sluchae ogranichenii na impulsy upravlyayuschikh sil”, Differents. uravneniya, 2:5 (1966), 587–599

[5] Pozharitskii G.K., “Igrovaya zadacha impulsnogo sblizheniya s protivnikom, ogranichennym po energii”, Prikl. matematika i mekhanika, 39:4 (1975), 579–589 | MR

[6] Subbotina N.N., Subbotin A.I., “Alternativa dlya differentsialnoi igry sblizheniya-ukloneniya pri ogranicheniyakh na impulsy upravlenii igrokov”, Prikl. matematika i mekhanika, 39:3 (1975), 397–406 | MR

[7] Serov V.P., Chentsov A.G., “O programmnoi lineinoi igrovoi zadache navedeniya pri ogranichenii na impuls upravlyaemoi sily”, Avtomatika i telemekhanika, 1993, no. 5, 61–74

[8] Kumkov S.I., Patsko V.S., “Informatsionnoe mnozhestvo v zadache impulsnogo upravleniya”, Avtomatika i telemekhanika, 1997, no. 7, 195–206 | MR

[9] Petrov N.N., “Zadacha gruppovogo presledovaniya v klasse impulsnykh strategii presledovatelei”, Izv-ya RAN, Teoriya i sistemy upravleniya, 2009, no. 2, 38–44

[10] Kotlyachkova E.V., “K nestatsionarnoi zadache prostogo presledovaniya v klasse impulsnykh strategii”, Izv-ya In-ta matematiki i informatiki UdGU, 1:45 (2015), 106–113

[11] Chikrii A.A., Matichin I.I., “Lineinye differentsialnye igry s impulsnym upravleniem igrokov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11:1 (2005), 212–224

[12] Belousov A.A., “Differentsialnye igry s integralnymi ogranicheniyami i impulsnymi upravleniyami”, Dokl. NAN Ukrainy, 2013, no. 11, 37–42

[13] Tukhtasinov M., “Lineinaya differentsialnaya igra presledovaniya s impulsnymi i integralno-ogranichennymi upravleniyami igrokov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:3 (2016), 273–282 | MR

[14] Ukhobotov V.I., “Lineinaya differentsialnaya igra s ogranicheniyami na impulsy upravlenii”, Prikl. matematika i mekhanika, 52:3 (1988), 355–362 | MR

[15] Ukhobotov V.I., Metod odnomernogo proektirovaniya v lineinykh differentsialnykh igrakh s integralnymi ogranicheniyami, ucheb. posobie, Izd-vo Chelyab. gos. un-ta, Chelyabinsk, 2005, 124 pp.

[16] Ukhobotov V.I., Zaitseva O.V., “Lineinaya zadacha impulsnoi vstrechi v zadannyi moment vremeni pri nalichii pomekhi”, Tr. In-ta matematiki i mekhaniki, 16:1 (2010), 186–198

[17] Aubin J.-P., Seube N., “Conditional viability for impulse differential games”, Annals of Operations Research, 137:1 (2005), 269–297 | DOI | MR

[18] Pontryagin L.S., “Lineinye differentsialnye igry presledovaniya”, Mat. sb. Novaya seriya, 112:3 (1980), 307–330 | MR

[19] Ukhobotov V.I., “Sintez upravleniya v odnotipnykh differentsialnykh igrakh s fiksirovannym vremenem”, Vestn. Chelyab. un-ta. Ser. Matematika, mekhanika, 1996, no. 1, 178–184 | MR

[20] Ukhobotov V.I., “Ob odnom klasse lineinykh differentsialnykh igr s impulsnymi upravleniyami”, Prikl. matematika i mekhanika, 38:4 (1974), 590–598

[21] Lyusternik L.A., Sobolev V.I., Elementy funktsionalnogo analiza, Nauka, M., 1965, 520 pp. | MR