Space of continuous set-valued mappings with closed unbounded values
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 200-208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a space of continuous multivalued mappings defined on a locally compact space ${\mathcal T}$ with countable base. Values of these mappings are closed not necessarily bounded sets from a metric space $(X,d(\cdot))$ in which closed balls are compact. The space $(X,d(\cdot))$ is locally compact and separable. Let $Y$ be a dense countable set from $X$. The distance $\rho(A,B)$ between sets $A$ and $B$ from the family $CL(X)$ of all nonempty closed subsets of $X$ is defined as $$\rho(A,B)=\sum_{i=1}^\infty \frac{1}{2^i}\,\frac{\mid~d(y_i,A)-d(y_i,B)\mid}{1+\mid~d(y_i,A)-d(y_i,B)\mid},$$ where $d(y_i,A)$ is the distance from a point $y_i \in Y$ to the set $A$. This distance is independent of the choice of the set $Y$, and the function $\rho(A,B)$ is a metric on the space $CL(X)$. The convergence of a sequence of sets $A_n$, $n\ge 1$, from the metric space $(CL(X),\rho(\cdot))$ is equivalent to the Kuratowski convergence of this sequence. We prove the completeness and separability of the space $(CL(X),\rho (\cdot))$ and give necessary and sufficient conditions for the compactness of sets in this space. The space $C({\mathcal T}, CL(X))$ of all continuous mappings from ${\mathcal T}$ to $(CL(X),\rho (\cdot))$ is endowed with the topology of uniform convergence on compact sets from ${\mathcal T}$. We prove the completeness and separability of the space $C({\mathcal T}, CL(X))$ and give necessary and sufficient conditions for the compactness of sets in this space. These results are reformulated for the space $C(T,CCL(X))$, where $T=[0,1]$, $X$ is a finite-dimensional Euclidean space, and $CCL(X)$ is the space of all nonempty closed convex sets from $X$ with the metric $\rho(\cdot)$. This space plays a crucial role in the study of sweeping processes. A counterexample showing the significance of the assumption of the compactness of closed balls from $X$ is given.
Keywords: unbounded sets, Kuratowski convergence, compactness.
@article{TIMM_2018_24_1_a17,
     author = {A. A. Tolstonogov},
     title = {Space of continuous set-valued mappings with closed unbounded values},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {200--208},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a17/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Space of continuous set-valued mappings with closed unbounded values
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 200
EP  - 208
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a17/
LA  - ru
ID  - TIMM_2018_24_1_a17
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Space of continuous set-valued mappings with closed unbounded values
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 200-208
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a17/
%G ru
%F TIMM_2018_24_1_a17
A. A. Tolstonogov. Space of continuous set-valued mappings with closed unbounded values. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 200-208. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a17/

[1] Tolstonogov A.A., “Issledovanie novogo klassa upravlyaemykh sistem”, Dokl. AN, 443:1 (2012), 26–28

[2] Tolstonogov A.A., “Control sweeping processes”, J. Convex Analysis, 23:4 (2016), 1099–1123 | MR

[3] Shouchuan Hu, Papageorgiou N.S., Handbook of multivalued analysis. Theory, v. 1, Math. Its Appl., 149, Kluwer, Dordrecht; Boston; London, 1997, 968 pp. | MR

[4] Panasenko E.A., Rodina L.I., Tonkov E.L., “Prostranstvo clcv $(R^n)$ s metrikoi Khausdorfa–Bebutova i differentsialnye vklyucheniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:1 (2011), 162–177

[5] Zhukovskiy E.S., Panasenko E.A., “On multivalued maps with images in the space of closed subset of a metric space”, Fixed Point Theory. Appl., 10 (2013), 21 | DOI | MR

[6] Tolstonogov A.A., “Kompaktnost v prostranstve mnogoznachnykh otobrazhenii s zamknutymi znacheniyami”, Dokl. AN, 456:2 (2014), 146–149 | DOI

[7] Burbaki N., Obschaya topologiya. Ispolzovanie veschestvennykh chisel v obschei topologii. Funktsionalnye prostranstva. Svodka rezultatov, Nauka, M., 1975, 408 pp. | MR

[8] Kuratovskii K., Topologiya, v. 1, Mir, M., 1966, 594 pp. | MR

[9] Beer G., “Metric spaces with nice closed balls and distance functions for closed sets”, Bull. Australian Math. Soc., 35:1 (1987), 81–96 | DOI | MR

[10] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 275 pp. | MR

[11] Kuratovskii K., Topologiya, v. 2, Mir, M., 1969, 624 pp. | MR

[12] Beer G., “On convergence of closed sets in a metric space and distance functions”, Bull. Australian Math. Soc., 31 (1985), 421–432 | DOI | MR

[13] Materon Zh., Sluchainye mnozhestva i integralnaya geometriya, Mir, M., 1978, 320 pp. | MR