On asymptotic properties of solutions of control systems with random parameters
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 189-199 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Differential equations and control systems with impulse action and random parameters are studied. These objects are characterized by stochastic behavior: the lengths $\theta_k$ of the intervals between the times of the impulses $\tau_k$, $k=0,1,\ldots $, are random variables and the magnitudes of the impulses also depend on random actions. The basic object of research is the control system \begin{gather*} \dot x=f(t,x,u),\quad t\ne\tau_k,\\ \Delta x\bigl|_{t=\tau_k}=g(x,w_k,v_k), \end{gather*} which depends on random parameters $\theta_k=\tau_{k+1}-\tau_k$ and $v_k$, $k=0,1,\ldots$. A probability measure $\mu$ is defined on the set $\Sigma$ of all possible sequences $\bigr ((\theta_0, v_0), \dots,(\theta_k, v_k),\dots\bigl)$. Admissible controls $u=u(t)$ are bounded measurable functions with values in a compact set $U\subset R^m$, and the vector $w_k $ is also a control affecting the behavior of the system at the times $\tau_k$. We consider the set $\mathfrak M=\bigl\{(t,x): t\in[0,+\infty),\, x\in M(t)\bigr\}$ defined by the function $t\mapsto M (t)$, which is continuous in the Hausdorff metric. The main result of the paper is sufficient conditions for the Lyapunov stability and asymptotic stability of the set $\mathfrak M$ with probability one. It is shown that the stability analysis of a set by means of the method of Lyapunov functions can be reduced to studying the stability of the zero solution of the corresponding differential equation. We also study the asymptotic behavior of solutions of differential equations with impulse action and random parameters. Conditions are obtained under which the solutions possess the Lyapunov stability and asymptotic stability for all values of the random parameter and with probability one. The results are illustrated by a probability model of a population subject to harvesting and by a model of competition of two kinds with impulse action.
Keywords: differential equations and control systems with random parameters, Lyapunov stability, asymptotic stability.
@article{TIMM_2018_24_1_a16,
     author = {L. I. Rodina},
     title = {On asymptotic properties of solutions of control systems with random parameters},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {189--199},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a16/}
}
TY  - JOUR
AU  - L. I. Rodina
TI  - On asymptotic properties of solutions of control systems with random parameters
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 189
EP  - 199
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a16/
LA  - ru
ID  - TIMM_2018_24_1_a16
ER  - 
%0 Journal Article
%A L. I. Rodina
%T On asymptotic properties of solutions of control systems with random parameters
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 189-199
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a16/
%G ru
%F TIMM_2018_24_1_a16
L. I. Rodina. On asymptotic properties of solutions of control systems with random parameters. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 189-199. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a16/

[1] Nedorezov L.V., Kurs lektsii po matematicheskoi ekologii, Sibirskii khronograf, Novosibirsk, 1997, 161 pp.

[2] Nedorezov L.V., Nazarov I.N., “Nepreryvno-diskretnye modeli dinamiki izolirovannoi populyatsii i dvukh konkuriruyuschikh vidov”, Mat. struktury i modelirovanie, 1998, no. 2, 77–91 | MR

[3] Nedorezov L.V., Utyupin Yu.V., “Diskretno-nepreryvnaya model dinamiki chislennosti dvupoloi populyatsii”, Sib. mat. zhurn., 44:3 (2003), 650–659 | MR

[4] Bainov D.D., “Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken away from the population”, Appl. Math. Comp., 39:1 (1990), 37–48 | DOI | MR

[5] Dykhta V.A., Samsonyuk O.N., Optimalnoe impulsnoe upravlenie s prilozheniyami, Fizmatlit, M., 2000, 256 pp. | MR

[6] Rodina L.I., “O nekotorykh veroyatnostnykh modelyakh dinamiki rosta populyatsii”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2013, no. 4, 109–124 | DOI

[7] Rodina L.I., “Ob invariantnykh mnozhestvakh upravlyaemykh sistem so sluchainymi koeffitsientami”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2014, no. 4, 109–121 | DOI

[8] Shiryaev A.N., Veroyatnost, Nauka, M., 1989, 580 pp. | MR

[9] Rodina L.I., Tyuteev I.I., “Ob asimptoticheskikh svoistvakh reshenii raznostnykh uravnenii so sluchainymi parametrami”, Vestn. Udmurt. un-ta. Matematika.Mekhanika. Kompyuternye nauki, 26:1 (2016), 79–86 | DOI | MR

[10] Rodina L.I., “Invariantnye i statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Izv. IMI UdGU, 2012, no. 2(40), 3–164

[11] Panasenko E.A., Tonkov E.L., “Invariantnye i ustoichivo invariantnye mnozhestva differentsialnykh vklyuchenii”, Tr. MIAN, 262, 2008, 202–221

[12] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 300 pp. | MR

[13] Larina Ya.Yu., “Funktsii Lyapunova i teoremy sravneniya dlya upravlyaemykh sistem s impulsnym vozdeistviem”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 25:1 (2015), 51–59 | DOI

[14] Larina Ya.Yu., Rodina L.I., “Asimptoticheski ustoichivye mnozhestva upravlyaemykh sistem s impulsnym vozdeistviem”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 26:4 (2016), 490–502 | DOI | MR

[15] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987, 761 pp. | MR

[16] Chaplygin S.A., Novyi metod priblizhennogo integrirovaniya differentsialnykh uravnenii, Gostekhizdat, M.; Leningrad, 1950, 102 pp.

[17] Panasenko E.A., Tonkov E.L., “Rasprostranenie teorem E.A. Barbashina i N.N. Krasovskogo ob ustoichivosti na upravlyaemye dinamicheskie sistemy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:3 (2009), 185–201

[18] Larina Ya.Yu., “O slaboi asimptoticheskoi ustoichivosti upravlyaemykh sistem s impulsnym vozdeistviem”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 26:1 (2016), 68–78 | DOI | MR