@article{TIMM_2018_24_1_a16,
author = {L. I. Rodina},
title = {On asymptotic properties of solutions of control systems with random parameters},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {189--199},
year = {2018},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a16/}
}
L. I. Rodina. On asymptotic properties of solutions of control systems with random parameters. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 189-199. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a16/
[1] Nedorezov L.V., Kurs lektsii po matematicheskoi ekologii, Sibirskii khronograf, Novosibirsk, 1997, 161 pp.
[2] Nedorezov L.V., Nazarov I.N., “Nepreryvno-diskretnye modeli dinamiki izolirovannoi populyatsii i dvukh konkuriruyuschikh vidov”, Mat. struktury i modelirovanie, 1998, no. 2, 77–91 | MR
[3] Nedorezov L.V., Utyupin Yu.V., “Diskretno-nepreryvnaya model dinamiki chislennosti dvupoloi populyatsii”, Sib. mat. zhurn., 44:3 (2003), 650–659 | MR
[4] Bainov D.D., “Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken away from the population”, Appl. Math. Comp., 39:1 (1990), 37–48 | DOI | MR
[5] Dykhta V.A., Samsonyuk O.N., Optimalnoe impulsnoe upravlenie s prilozheniyami, Fizmatlit, M., 2000, 256 pp. | MR
[6] Rodina L.I., “O nekotorykh veroyatnostnykh modelyakh dinamiki rosta populyatsii”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2013, no. 4, 109–124 | DOI
[7] Rodina L.I., “Ob invariantnykh mnozhestvakh upravlyaemykh sistem so sluchainymi koeffitsientami”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2014, no. 4, 109–121 | DOI
[8] Shiryaev A.N., Veroyatnost, Nauka, M., 1989, 580 pp. | MR
[9] Rodina L.I., Tyuteev I.I., “Ob asimptoticheskikh svoistvakh reshenii raznostnykh uravnenii so sluchainymi parametrami”, Vestn. Udmurt. un-ta. Matematika.Mekhanika. Kompyuternye nauki, 26:1 (2016), 79–86 | DOI | MR
[10] Rodina L.I., “Invariantnye i statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Izv. IMI UdGU, 2012, no. 2(40), 3–164
[11] Panasenko E.A., Tonkov E.L., “Invariantnye i ustoichivo invariantnye mnozhestva differentsialnykh vklyuchenii”, Tr. MIAN, 262, 2008, 202–221
[12] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 300 pp. | MR
[13] Larina Ya.Yu., “Funktsii Lyapunova i teoremy sravneniya dlya upravlyaemykh sistem s impulsnym vozdeistviem”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 25:1 (2015), 51–59 | DOI
[14] Larina Ya.Yu., Rodina L.I., “Asimptoticheski ustoichivye mnozhestva upravlyaemykh sistem s impulsnym vozdeistviem”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 26:4 (2016), 490–502 | DOI | MR
[15] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987, 761 pp. | MR
[16] Chaplygin S.A., Novyi metod priblizhennogo integrirovaniya differentsialnykh uravnenii, Gostekhizdat, M.; Leningrad, 1950, 102 pp.
[17] Panasenko E.A., Tonkov E.L., “Rasprostranenie teorem E.A. Barbashina i N.N. Krasovskogo ob ustoichivosti na upravlyaemye dinamicheskie sistemy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:3 (2009), 185–201
[18] Larina Ya.Yu., “O slaboi asimptoticheskoi ustoichivosti upravlyaemykh sistem s impulsnym vozdeistviem”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 26:1 (2016), 68–78 | DOI | MR