On some properties of vector measures
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 175-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the properties of a parameterized sequence of countably additive vector measures having a density, defined on a compact space with a nonnegative nonatomic Radon measure, and taking values in a separable Banach space. Each vector measure in this sequence depends continuously on a parameter belonging to some metric space. It is assumed that a countable locally finite open covering and a partition of unity inscribed in it are given in the metric space of the parameters. It is proved that, in the compact support space of the vector measures (with Radon measure), for each value of the parameter, there exists a sequence of measurable (with respect to the Radon measure on the support space of the vector measures) subsets of this compact space that forms a partition of this space. Moreover, the sequence of measurable partitions depends uniformly continuously on the parameter and, for each value of the parameter and for each value of the index of the sequence of measures, the relative value of the measure of the corresponding subset of the partition of the compact space can be approximated uniformly by the corresponding value of the partition function of unity.
Keywords: Lyapunov theorem, countably additive vector measure, density of a vector measure, partition of unity, continuous mapping.
@article{TIMM_2018_24_1_a15,
     author = {E. S. Polovinkin},
     title = {On some properties of vector measures},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {175--188},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a15/}
}
TY  - JOUR
AU  - E. S. Polovinkin
TI  - On some properties of vector measures
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 175
EP  - 188
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a15/
LA  - ru
ID  - TIMM_2018_24_1_a15
ER  - 
%0 Journal Article
%A E. S. Polovinkin
%T On some properties of vector measures
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 175-188
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a15/
%G ru
%F TIMM_2018_24_1_a15
E. S. Polovinkin. On some properties of vector measures. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 175-188. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a15/

[1] Lapunov A.A., “Sur le fonction-vecteurs completement additives”, Izv. Akad.Nauk SSSR. Ser Math., 4 (1940), 465–478 | MR

[2] Lindenstrauss J., “A short proof of Lyapounov's convexity theorem”, J. Math. Mech., 15 (1966), 971–972 | MR

[3] Ioffe A.D., Tikhomirov V.M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 481 pp. | MR

[4] Polovinkin E.S., “The properties of continuity and differentiation of solution sets of Lipschetzean differential inclusions”, Modeling, Estimation and Control of Systems with Uncertainty, Ser. PSCT 10, eds. G.B.Di Masi, A.Gombani, A.B.Kurzhansky, Birkhäuser, Boston, 1991, 349–360 | DOI | MR

[5] Polovinkin E.S., “Neobkhodimye usloviya optimalnosti s differentsialnymi vklyucheniyami”, Tr. MIAN, 211, 1995, 387–400

[6] Diestel J., J.J. Uhl, Theory of vector measures, Math. Surveys, 15, Amer. Math. Soc., Providence, 1977, 322 pp. | DOI | MR

[7] Fryszkowski. A., Rzezuchowski, T., “Continuous version of Filippov-Wazewski relaxation theorem”, J. Diff. Eqs., 94 (1992), 254–265 | DOI | MR

[8] Fryszkowski, A., “Continuous selections for a class of nonconvex multivalued maps”, Studia Math., 76:2 (1983), 163–174 | DOI | MR

[9] Fryszkowski, A., Fixed point theory for decomposable sets, Kluwer Acad. Publ., Dordrecht; Boston, 2004, 209 pp. | DOI | MR