Construction of a strong Nash equilibrium in a class of infinite non-zero-sum games
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 165-174 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In our previous papers (2002, 2017), we derived conditions for the existence of a strong Nash equilibrium in multistage non-zero-sum games under additional constraints on the possible deviations of coalitions from their agreed-upon strategies. These constraints allowed only one-time simultaneous deviations of all the players in a coalition. However, it is clear that in real-world problems the deviations of different members of a coalition may occur at different times (at different stages of the game), which makes the punishment strategy approach proposed by the authors earlier inapplicable in the general case. The fundamental difficulty is that in the general case the players who must punish the deviating coalition know neither the members of this coalition nor the times when each player performs the deviation. In this paper we propose a new punishment strategy, which does not require the full information about the deviating coalition but uses only the fact of deviation of at least one player of the coalition. Of course, this punishment strategy can be realized only under some additional constraints on simultaneous components of the game in an infinite-stage game. Under these additional constraints it was proved that the punishment of the deviating coalition can be effectively realized. As a result, the existence of a strong Nash equilibrium was established.
Keywords: strong Nash equilibrium, characteristic function, multistage game, repeated game
Mots-clés : imputation, core.
@article{TIMM_2018_24_1_a14,
     author = {L. A. Petrosyan and Ya. B. Pankratova},
     title = {Construction of a strong {Nash} equilibrium in a class of infinite non-zero-sum games},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {165--174},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a14/}
}
TY  - JOUR
AU  - L. A. Petrosyan
AU  - Ya. B. Pankratova
TI  - Construction of a strong Nash equilibrium in a class of infinite non-zero-sum games
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 165
EP  - 174
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a14/
LA  - ru
ID  - TIMM_2018_24_1_a14
ER  - 
%0 Journal Article
%A L. A. Petrosyan
%A Ya. B. Pankratova
%T Construction of a strong Nash equilibrium in a class of infinite non-zero-sum games
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 165-174
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a14/
%G ru
%F TIMM_2018_24_1_a14
L. A. Petrosyan; Ya. B. Pankratova. Construction of a strong Nash equilibrium in a class of infinite non-zero-sum games. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 165-174. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a14/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Fizmatlit, M., 1974, 456 pp. | MR

[2] Petrosyan L.A., “Signalnye strategii i strategii povedeniya v odnom klasse beskonechnykh pozitsionnykh igr”, Pozitsionnye igry, sb. st., eds. red. N.N. Vorobeva i I.N. Rublevskoi, Nauka, M., 1967, 221–230 | MR

[3] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR

[4] Aumann R.J., Maschler M., Repeated games with incomplete information, MIT Press, Cambridge, 1995, 360 pp. | MR

[5] Fudenberg D., Maskin E., “The Folk theorem in repeated games with discounting or with incomplete information”, Econometrica, 54:3 (1986), 533–554 | DOI | MR

[6] Maschler M., Solan E., Zamir S., Game theory, Cambridge University Press, Cambridge, 2013, 1003 pp. | MR

[7] Myerson R.B., “Multistage games with communication”, Econometrica, 54 (1986), 323–358 | DOI | MR

[8] Nash J., “Non-cooperative games”, Ann. Mathematics, 54:2 (1951), 286–295 | DOI | MR

[9] Neumann J., Morgenstern O., Theory of games and economic behavior, Princeton, 1947, 641 pp. | DOI | MR

[10] Petrosjan L.A., Grauer L.V., “Strong Nash equilibrium in multistage games”, International Game Theory Review, 4:3 (2002), 255–264 | DOI | MR

[11] Petrosyan L., Chistyakov S., Pankratova Ya., “Existence of strong Nash equilibrium in repeated and multistage games”, Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V.F. Demyanov), CNSA 2017, Saint-Petersburg, 2017, 255–257 | DOI

[12] Rubinstein A., “Equilibrium in supergames”, Essays in Game Theory, 1994, 17–28 | DOI | MR