A multiple capture in a group pursuit problem with fractional derivatives
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 156-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In a finite-dimensional Euclidean space, we consider a problem of pursuing one evader by a group of pursuers with equal capabilities of all participants. The dynamics of the problem is described by the system $$ D^{(\alpha)}z_i=az_i+u_i-v,\quad u_i,v\in V, $$ where $D^{(\alpha)}f$ is the Caputo derivative of order $\alpha\in(1,2)$ of the function $f$. The set of admissible controls $V$ is a strictly convex compact set and $a$ is a real number. The aim of the group of pursuers is to catch the evader by at least $m$ different pursuers, possibly at different times. The terminal sets are the origin. The pursuers use quasi-strategies. We obtain sufficient conditions for the solvability of the pursuit problem in terms of the initial positions. The investigation is based on the method of resolving functions, which allows us to obtain sufficient conditions for the termination of the approach problem in some guaranteed time.
Keywords: differential game, group pursuit, multiple capture, pursuer, evader.
@article{TIMM_2018_24_1_a13,
     author = {N. N. Petrov},
     title = {A multiple capture in a group pursuit problem with fractional derivatives},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {156--164},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a13/}
}
TY  - JOUR
AU  - N. N. Petrov
TI  - A multiple capture in a group pursuit problem with fractional derivatives
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 156
EP  - 164
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a13/
LA  - ru
ID  - TIMM_2018_24_1_a13
ER  - 
%0 Journal Article
%A N. N. Petrov
%T A multiple capture in a group pursuit problem with fractional derivatives
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 156-164
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a13/
%G ru
%F TIMM_2018_24_1_a13
N. N. Petrov. A multiple capture in a group pursuit problem with fractional derivatives. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 156-164. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a13/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[2] Chikrii A.A., Konfliktno upravlyamye protsessy, Nauk. dumka, Kiev, 1992, 384 pp.

[3] Grigorenko N.L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1990, 197 pp.

[4] Blagodatskikh A.I., Petrov N.N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob'ektov, Izd-vo Udmurt. un-ta, Izhevsk, 2009, 266 pp. | MR

[5] Eidelman S.D., Chikrii A.A., “Dinamicheskie zadachi sblizheniya dlya uravnenii drobnogo poryadka”, Ukr. mat. zhurn., 52:11 (2000), 1566–1583 | MR

[6] Chikrii A.A., Matichin I.I., “Igrovye zadachi dlya lineinykh sistem drobnogo poryadka”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:3 (2009), 262–278

[7] Chikrii A.A., Matichin I.I., “O lineinykh konfliktno-upravlyaemykh protsessakh s drobnymi proizvodnymi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:2 (2011), 256–270 | MR

[8] Grigorenko N.L., “Igra prostogo presledovaniya-ubeganiya gruppy presledovatelei i odnogo ubegayuschego”, Vestn. MGU. Ser. Vychislit. matematika i kibernetika, 1983, no. 1, 41–47 | MR

[9] Blagodatskikh A.I., “Odnovremennaya mnogokratnaya poimka v zadache prostogo presledovaniya”, Prikl. matematika i mekhanika, 73:1 (2009), 54–59 | MR

[10] Petrov N.N., “Mnogokratnaya poimka v primere L.S.Pontryagina s fazovymi ogranicheniyami”, Prikl. matematika i mekhanika, 61:5 (1997), 747–754 | MR

[11] Blagodatskikh A.I., “Mnogokratnaya poimka v primere Pontryagina”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 2, 3–12

[12] Petrov N.N., Soloveva N.A., “Mnogokratnaya poimka v rekurrentnom primere L.S.Pontryagina s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:2 (2015), 178–186 | MR

[13] Petrov N.N., Soloveva N.A., “Mnogokratnaya poimka v rekurrentnom primere L.S.Pontryagina”, Avtomatika i telemekhanika, 2016, no. 5, 128–135

[14] Blagodatskikh A.I., “Odnovremennaya mnogokratnaya poimka v konfliktno upravlyaemom protsesse”, Prikl. matematika i mekhanika, 77:3 (2013), 433–440 | MR

[15] Petrov N.N., Soloveva N.A., “Mnogokratnaya poimka ubegayuschego v lineinykh rekurrentnykh differentsialnykh igrakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23:1 (2017), 212–218 | MR

[16] Blagodatskikh A.I., “Mnogokratnaya poimka zhestko soedinennykh ubegayuschikh”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 26:1 (2016), 46–57 | MR

[17] Petrov N.N., “Odna zadacha gruppovogo presledovaniya s drobnymi proizvodnymi i fazovymi ogranicheniyami”, Vestn. Udmurt. un-ta. Matematika.Mekhanika. Kompyuternye nauki, 27:1 (2017), 54–59 | MR

[18] Caputo M., “Linear model of dissipation whose q is almost frequency independent-II”, Geophys. R. Astr. Soc., 1967, no. 13, 529–539 | DOI

[19] Popov A.Yu., Sedletskii A.M., “Raspredelenie kornei funktsii Mittag - Lefflera”, Sovremennaya matematika. Fundamentalnye napravleniya, 40 (2011), 3–171

[20] Dzhrbashyan M.M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966, 672 pp.

[21] Chikrii A.A., Matichin I.I., “Ob analoge formuly Koshi dlya lineinykh sistem proizvolnogo drobnogo poryadka”, Dopovidi Natsionalnoi akademii nauk Ukraini, 2007, no. 1, 50–55