Keywords: one-sided turn, three-dimensional reachable set, Pontryagin maximum principle, piecewise-constant control, convexity of sections of a reachable set.
@article{TIMM_2018_24_1_a12,
author = {V. S. Patsko and A. A. Fedotov},
title = {Reachable set at a certain time for a {Dubins} car in the case of a one-sided turn},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {143--155},
year = {2018},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a12/}
}
TY - JOUR AU - V. S. Patsko AU - A. A. Fedotov TI - Reachable set at a certain time for a Dubins car in the case of a one-sided turn JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 143 EP - 155 VL - 24 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a12/ LA - ru ID - TIMM_2018_24_1_a12 ER -
V. S. Patsko; A. A. Fedotov. Reachable set at a certain time for a Dubins car in the case of a one-sided turn. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 143-155. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a12/
[1] Dubins L.E., “On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents”, American J. Math., 79:3 (1957), 497–516 | DOI | MR
[2] Markov A.A., “Neskolko primerov resheniya osobogo roda zadach o naibolshikh i naimenshikh velichinakh”, Soobsch. Kharkov. mat. obsch 2-ya ser., 1:2 (1889), 250–276
[3] Isaacs R., Games of pursuit, Scientific report of the RAND Corporation, Santa Monica, 1951
[4] Aizeks R., Differentsialnye igry, Mir, M., 1967, 479 pp. | MR
[5] Pecsvaradi T., “Optimal horizontal guidance law for aircraft in the terminal area”, IEEE Trans. Automatic Control, 17:6 (1972), 763–772 | DOI | MR
[6] Bakolas E., Tsiotras P., “Optimal synthesis of the asymmetric sinistral/dextral Markov-Dubins problem”, J. Optim. Theory Appl., 150:2 (2011), 233–250 | DOI | MR
[7] Choi H., Time-optimal paths for a Dubins car and Dubins airplane with a unidirectional turning constraint, Dissertation for the degree of doctor of philosophy, University of Michigan, Michigan, 2014, 134 pp.
[8] Berdyshev Yu.I., Nelineinye zadachi posledovatelnogo upravleniya i ikh prilozhenie, IMM UrO RAN, Ekaterinburg, 2015, 193 pp. | MR
[9] Robot motion planning and control, Lecture Notes in Control and Information Sciences, 229, ed. J.-P. Laumond, Springer-Verlag, Berlin; Heidelberg, 1998, 354 pp. | MR
[10] Laumond J.-P., Mansard N., Lasserre J.-B., “Optimality in robot motion: Optimal versus optimized motion”, Communications of the ACM, 57:9 (2014), 82–89 | DOI
[11] R.M. Akhmedov [i dr.], Avtomatizirovannye sistemy upravleniya vozdushnym dvizheniem, uch. pos., eds. S. G. Pyatko, A.I. Krasov, Politekhnika, SPb., 2004, 446 pp.
[12] Meyer Y., Shima T., Isaiah P., “On Dubins paths to intercept a moving target”, Automatica, 53 (2015), 256–263 | DOI | MR
[13] Patsko V.S., Pyatko S.G., Fedotov A.A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi upravlyaemoi sistemy”, Izv. RAN. TiSU, 2003, no. 3, 8–16 | MR
[14] Fedotov A., Patsko V., Turova V., “Reachable sets for simple models of car motion”, Recent Advances in Mobile Robotics, ed. A.V. Topalov, InTech, Rijeka, Croatia, 2011, 147–172 URL: http://home.imm.uran.ru/kumkov/Intech_paper_2011/Intech_paper.pdf | DOI
[15] Simonenko A.S., Fedotov A.A., “Mnozhestvo dostizhimosti dlya avtomobilya Dubinsa pri nesimmetrichnom ogranichenii na upravlenie”, [e-resource], MPMA 2017 (SoProMat 2017), Modern Problems in Mathematics and its Applications, Proc. 48th International Youth School-Conf. (Yekaterinburg, February 5 - February 11, 2017), CEUR-WP, 1894, 79–87 URL: http://ceur-ws.org/Vol-1894/opt6.pdf
[16] Takei R., Tsai R., “Optimal trajectories of curvature constrained motion in the Hamilton-Jacobi formulation”, J. Sci. Comp., 54:2-3 (2013), 622–644 | DOI | MR
[17] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze [i dr.], Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969, 384 pp.
[18] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp. | MR
[19] Khamza M.Kh., Kolas I., Rungalder V., “Optimalnye po bystrodeistviyu traektorii poleta v zadache presledovaniya”, Upravlenie kosmicheskimi apparatami i korablyami, Tr. Vtorogo Mezhdunar. simpoziuma IFAK po avtomaticheskomu upravleniyu v mirnom ispolzovanii kosmicheskogo prostranstva (Vena, sentyabr 1967), eds. red. B.N. Petrova, I.S. Ukolova, Nauka, M., 1971, 410–418
[20] Berdyshev Yu.I., “Sintez optimalnogo upravleniya dlya odnoi sistemy 3-go poryadka”, Voprosy analiza nelineinykh sistem avtomaticheskogo upravleniya, cb. nauch. tr., Institut matematiki i mekhaniki UNTs AN SSSR, Sverdlovsk, 1973, 91–101