Reachable set at a certain time for a Dubins car in the case of a one-sided turn
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 143-155 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study a three-dimensional reachable set “at a time” for a nonlinear control system often called a Dubins car. The controlled object (a car) moves in a plane with a constant linear velocity and bounded turning radius. The case where the car can turn left and right was studied earlier. In this paper, we investigate the case where the car can turn only in one direction. In the case where the constraints imposed on the control permit a straight line motion, we prove that the system can be guided to any point of the boundary of the reachable set by means of a piecewise-constant control with at most two switchings. Moreover, two-dimensional sections of the reachable set with constant angular coordinate are convex. If the constraints on the control forbid a straight line motion (which means that the car is turning at each time and the turning radius is chosen within prescribed limits), then the number of switchings of a piecewise-constant control guiding the system to the boundary of the reachable set grows with the growth of the time for which the reachable set is constructed. We consider in detail the case where this time is not greater than the time needed for a $2\pi$ turn with the smallest possible turning radius. In this case, any piecewise-constant control guiding the system to the boundary has at most two switchings, and the sections of the reachable set with constant angular coordinate are strictly convex.
Mots-clés : Dubins car
Keywords: one-sided turn, three-dimensional reachable set, Pontryagin maximum principle, piecewise-constant control, convexity of sections of a reachable set.
@article{TIMM_2018_24_1_a12,
     author = {V. S. Patsko and A. A. Fedotov},
     title = {Reachable set at a certain time for a {Dubins} car in the case of a one-sided turn},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {143--155},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a12/}
}
TY  - JOUR
AU  - V. S. Patsko
AU  - A. A. Fedotov
TI  - Reachable set at a certain time for a Dubins car in the case of a one-sided turn
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 143
EP  - 155
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a12/
LA  - ru
ID  - TIMM_2018_24_1_a12
ER  - 
%0 Journal Article
%A V. S. Patsko
%A A. A. Fedotov
%T Reachable set at a certain time for a Dubins car in the case of a one-sided turn
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 143-155
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a12/
%G ru
%F TIMM_2018_24_1_a12
V. S. Patsko; A. A. Fedotov. Reachable set at a certain time for a Dubins car in the case of a one-sided turn. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 143-155. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a12/

[1] Dubins L.E., “On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents”, American J. Math., 79:3 (1957), 497–516 | DOI | MR

[2] Markov A.A., “Neskolko primerov resheniya osobogo roda zadach o naibolshikh i naimenshikh velichinakh”, Soobsch. Kharkov. mat. obsch 2-ya ser., 1:2 (1889), 250–276

[3] Isaacs R., Games of pursuit, Scientific report of the RAND Corporation, Santa Monica, 1951

[4] Aizeks R., Differentsialnye igry, Mir, M., 1967, 479 pp. | MR

[5] Pecsvaradi T., “Optimal horizontal guidance law for aircraft in the terminal area”, IEEE Trans. Automatic Control, 17:6 (1972), 763–772 | DOI | MR

[6] Bakolas E., Tsiotras P., “Optimal synthesis of the asymmetric sinistral/dextral Markov-Dubins problem”, J. Optim. Theory Appl., 150:2 (2011), 233–250 | DOI | MR

[7] Choi H., Time-optimal paths for a Dubins car and Dubins airplane with a unidirectional turning constraint, Dissertation for the degree of doctor of philosophy, University of Michigan, Michigan, 2014, 134 pp.

[8] Berdyshev Yu.I., Nelineinye zadachi posledovatelnogo upravleniya i ikh prilozhenie, IMM UrO RAN, Ekaterinburg, 2015, 193 pp. | MR

[9] Robot motion planning and control, Lecture Notes in Control and Information Sciences, 229, ed. J.-P. Laumond, Springer-Verlag, Berlin; Heidelberg, 1998, 354 pp. | MR

[10] Laumond J.-P., Mansard N., Lasserre J.-B., “Optimality in robot motion: Optimal versus optimized motion”, Communications of the ACM, 57:9 (2014), 82–89 | DOI

[11] R.M. Akhmedov [i dr.], Avtomatizirovannye sistemy upravleniya vozdushnym dvizheniem, uch. pos., eds. S. G. Pyatko, A.I. Krasov, Politekhnika, SPb., 2004, 446 pp.

[12] Meyer Y., Shima T., Isaiah P., “On Dubins paths to intercept a moving target”, Automatica, 53 (2015), 256–263 | DOI | MR

[13] Patsko V.S., Pyatko S.G., Fedotov A.A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi upravlyaemoi sistemy”, Izv. RAN. TiSU, 2003, no. 3, 8–16 | MR

[14] Fedotov A., Patsko V., Turova V., “Reachable sets for simple models of car motion”, Recent Advances in Mobile Robotics, ed. A.V. Topalov, InTech, Rijeka, Croatia, 2011, 147–172 URL: http://home.imm.uran.ru/kumkov/Intech_paper_2011/Intech_paper.pdf | DOI

[15] Simonenko A.S., Fedotov A.A., “Mnozhestvo dostizhimosti dlya avtomobilya Dubinsa pri nesimmetrichnom ogranichenii na upravlenie”, [e-resource], MPMA 2017 (SoProMat 2017), Modern Problems in Mathematics and its Applications, Proc. 48th International Youth School-Conf. (Yekaterinburg, February 5 - February 11, 2017), CEUR-WP, 1894, 79–87 URL: http://ceur-ws.org/Vol-1894/opt6.pdf

[16] Takei R., Tsai R., “Optimal trajectories of curvature constrained motion in the Hamilton-Jacobi formulation”, J. Sci. Comp., 54:2-3 (2013), 622–644 | DOI | MR

[17] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze [i dr.], Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969, 384 pp.

[18] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp. | MR

[19] Khamza M.Kh., Kolas I., Rungalder V., “Optimalnye po bystrodeistviyu traektorii poleta v zadache presledovaniya”, Upravlenie kosmicheskimi apparatami i korablyami, Tr. Vtorogo Mezhdunar. simpoziuma IFAK po avtomaticheskomu upravleniyu v mirnom ispolzovanii kosmicheskogo prostranstva (Vena, sentyabr 1967), eds. red. B.N. Petrova, I.S. Ukolova, Nauka, M., 1971, 410–418

[20] Berdyshev Yu.I., “Sintez optimalnogo upravleniya dlya odnoi sistemy 3-go poryadka”, Voprosy analiza nelineinykh sistem avtomaticheskogo upravleniya, cb. nauch. tr., Institut matematiki i mekhaniki UNTs AN SSSR, Sverdlovsk, 1973, 91–101