Mots-clés : dynamic reconstruction
@article{TIMM_2018_24_1_a10,
author = {V. I. Maksimov},
title = {On the problem of input reconstruction in a nonlinear system with constant delay},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {121--130},
year = {2018},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a10/}
}
V. I. Maksimov. On the problem of input reconstruction in a nonlinear system with constant delay. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 121-130. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a10/
[1] Osipov Yu. S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, Basel, 1995, 625 pp. | MR
[2] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2011, 292 pp.
[3] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR
[4] Vasilev F.P., Metody optimizatsii, v. I, MTsNMO, M., 2011, 620 pp.
[5] Maksimov V.I., “Metod funktsii Lyapunova v zadachakh rekonstruktsii vkhodov sistem s posledeistviem”, Sovrem. matematika i ee prilozheniya, 26 (2005), 78–95
[6] Blizorukova M.S., “O modelirovanii vkhoda v sisteme s zapazdyvaniem”, Prikl. matematika i informatika, sb. Tr. fakulteta VMiK MGU im. M.V.Lomonosova, v. 28, MAKS Press, M., 2000, 105–115
[7] Vasileva E.V., “Dinamicheskii metod nevyazki dlya differentsialnogo uravneniya s pamyatyu”, Problemy mat. fiziki, sb. Tr. fakulteta VMiK MGU im. M.V.Lomonosova, Dialog-MGU, M., 1998, 68–74
[8] Kadiev A.M., Maksimov V.I., “O rekonstruktsii upravlenii v parabolicheskom uravnenii”, Differents. uravneniya, 43:11 (2007), 1545–1552 | MR
[9] Maksimov V., Pandolfi L., “On a dynamical identification of controls in nonlinear time-lag system”, IMA J. Math. Control Inform., 19:1/2 (2002), 173–184 | DOI | MR
[10] Karrel F., Maksimov V. I., Skuratov E.N., “On dynamical reconstruction of control in a system with time delay. Finite-dimensional models”, J. Inverse and Ill-Posed Probl., 9:3 (2001), 269–282 | DOI | MR
[11] Maksimov V.I., “O primenenii konechnomernykh upravlyaemykh modelei k zadache rekonstruktsii vkhoda v lineinoi sisteme s zapazdyvaniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:1 (2013), 196–204 | MR
[12] Banks H.T., Bihari K. L., “Modeling and estimating uncertainty in parameter estimation”, Inverse Probl., 17:1 (2001), 1–17 | DOI | MR
[13] Banks H.T., Bortz D.M., “Inverse problems for a class of measure dependent dynamical systems”, J. Inverse and Ill-Posed Probl., 13:1 (2005), 103–121 | DOI | MR
[14] Banks H.T., Rehm K., Sutton K., “Inverse problems for nonlinear delay systems”, Methods Appl. Anal., 17:3 (2010), 331–356 | DOI | MR
[15] Kryazhimskii A.V., Maksimov V.I., “Approksimatsiya lineinykh differentsialno-raznostnykh igr”, Prikl. matematika i mekhanika, 42:2 (1978), 202–209 | MR
[16] Maksimov V.I., “Approksimatsiya nelineinykh differentsialno-raznostnykh igr”, Tr. In-ta matematiki i mekhaniki UrO RAN, 1979, no. 30, 49–65
[17] Lukoyanov N.Yu., Plaksin A. R., “Ob approksimatsii nelineinykh konfliktno-upravlyaemykh sistem neitralnogo tipa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 204–217