On the problem of input reconstruction in a nonlinear system with constant delay
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 121-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the problem of reconstructing an unknown input acting on a system described by a nonlinear vector differential equation with constant delay. Both the input and the solution (trajectory) of the system are unknown. During the operation of the system, its phase states are measured at discrete times. The measurements, in general, are inaccurate. It is required to give a dynamic stable rule for the approximate reconstruction of the input, which means that the approximate values must be found in real time and the approximations must be arbitrarily accurate for sufficiently exact observations. For the solution of this problem, we propose an algorithm based on the method of models with feedback control. The algorithm reconstructs the unknown input simultaneously with the process. The algorithm is stable with respect to information noises and computational errors.
Keywords: delay systems, method of controlled models.
Mots-clés : dynamic reconstruction
@article{TIMM_2018_24_1_a10,
     author = {V. I. Maksimov},
     title = {On the problem of input reconstruction in a nonlinear system with constant delay},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {121--130},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a10/}
}
TY  - JOUR
AU  - V. I. Maksimov
TI  - On the problem of input reconstruction in a nonlinear system with constant delay
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 121
EP  - 130
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a10/
LA  - ru
ID  - TIMM_2018_24_1_a10
ER  - 
%0 Journal Article
%A V. I. Maksimov
%T On the problem of input reconstruction in a nonlinear system with constant delay
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 121-130
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a10/
%G ru
%F TIMM_2018_24_1_a10
V. I. Maksimov. On the problem of input reconstruction in a nonlinear system with constant delay. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 121-130. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a10/

[1] Osipov Yu. S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, Basel, 1995, 625 pp. | MR

[2] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2011, 292 pp.

[3] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[4] Vasilev F.P., Metody optimizatsii, v. I, MTsNMO, M., 2011, 620 pp.

[5] Maksimov V.I., “Metod funktsii Lyapunova v zadachakh rekonstruktsii vkhodov sistem s posledeistviem”, Sovrem. matematika i ee prilozheniya, 26 (2005), 78–95

[6] Blizorukova M.S., “O modelirovanii vkhoda v sisteme s zapazdyvaniem”, Prikl. matematika i informatika, sb. Tr. fakulteta VMiK MGU im. M.V.Lomonosova, v. 28, MAKS Press, M., 2000, 105–115

[7] Vasileva E.V., “Dinamicheskii metod nevyazki dlya differentsialnogo uravneniya s pamyatyu”, Problemy mat. fiziki, sb. Tr. fakulteta VMiK MGU im. M.V.Lomonosova, Dialog-MGU, M., 1998, 68–74

[8] Kadiev A.M., Maksimov V.I., “O rekonstruktsii upravlenii v parabolicheskom uravnenii”, Differents. uravneniya, 43:11 (2007), 1545–1552 | MR

[9] Maksimov V., Pandolfi L., “On a dynamical identification of controls in nonlinear time-lag system”, IMA J. Math. Control Inform., 19:1/2 (2002), 173–184 | DOI | MR

[10] Karrel F., Maksimov V. I., Skuratov E.N., “On dynamical reconstruction of control in a system with time delay. Finite-dimensional models”, J. Inverse and Ill-Posed Probl., 9:3 (2001), 269–282 | DOI | MR

[11] Maksimov V.I., “O primenenii konechnomernykh upravlyaemykh modelei k zadache rekonstruktsii vkhoda v lineinoi sisteme s zapazdyvaniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:1 (2013), 196–204 | MR

[12] Banks H.T., Bihari K. L., “Modeling and estimating uncertainty in parameter estimation”, Inverse Probl., 17:1 (2001), 1–17 | DOI | MR

[13] Banks H.T., Bortz D.M., “Inverse problems for a class of measure dependent dynamical systems”, J. Inverse and Ill-Posed Probl., 13:1 (2005), 103–121 | DOI | MR

[14] Banks H.T., Rehm K., Sutton K., “Inverse problems for nonlinear delay systems”, Methods Appl. Anal., 17:3 (2010), 331–356 | DOI | MR

[15] Kryazhimskii A.V., Maksimov V.I., “Approksimatsiya lineinykh differentsialno-raznostnykh igr”, Prikl. matematika i mekhanika, 42:2 (1978), 202–209 | MR

[16] Maksimov V.I., “Approksimatsiya nelineinykh differentsialno-raznostnykh igr”, Tr. In-ta matematiki i mekhaniki UrO RAN, 1979, no. 30, 49–65

[17] Lukoyanov N.Yu., Plaksin A. R., “Ob approksimatsii nelineinykh konfliktno-upravlyaemykh sistem neitralnogo tipa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 204–217