On generators of a matrix algebra and some of its subalgebras
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 8-14

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a full matrix algebra $M_n$ admits a generator system consisting of two nilpotent matrices $P$ and $Q$ such that any matrix $A=(a_{ij})$ is expressed explicitly in terms of $P$ and $Q$ as $A=\sum_{i\neq j}a_{ij}P^{i-1}QP^{n-j}$, $i,j=1,2,\ldots,n$. We show how this representation can be applied to calculate the powers of the coefficient matrix $A$ of a linear system $x_{n+1}=Ax_n+r_n$ modeling heat exchange in a regenerative air preheater. More exactly, we obtain convenient recursive formulas for the elements of $A^{k}$, $k=1,2,\ldots$. We also consider the problem of constructing a simple system of generators for the subalgebras of diagonal and triangular matrices. We observe that a generating matrix of the subalgebra of diagonal matrices is related to the Lagrange interpolation formula and prove that the subalgebra of triangular matrices is generated by a diagonal matrix with pairwise different elements and first skew diagonal. It is shown that a triangular matrix $A \in T_n$ with pairwise different diagonal elements can be reduced to a Jordan form within the subalgebra $T_n$; i.e., there exists $L\in T_n$ such that $L^{-1}AL$ is diagonal. In the general case this property does not hold for arbitrary matrices from $T_n$.
Mots-clés : matrix algebra, nilpotent matrix, matrix unit, subalgebra, Jordan form, interpolation polynomial
Keywords: system of generators, discrete system, air preheater, heat exchange.
@article{TIMM_2018_24_1_a1,
     author = {A. A. Azamov},
     title = {On generators of a matrix algebra and some of its subalgebras},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {8--14},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a1/}
}
TY  - JOUR
AU  - A. A. Azamov
TI  - On generators of a matrix algebra and some of its subalgebras
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 8
EP  - 14
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a1/
LA  - ru
ID  - TIMM_2018_24_1_a1
ER  - 
%0 Journal Article
%A A. A. Azamov
%T On generators of a matrix algebra and some of its subalgebras
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 8-14
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a1/
%G ru
%F TIMM_2018_24_1_a1
A. A. Azamov. On generators of a matrix algebra and some of its subalgebras. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 8-14. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a1/