On the structure of a finitary linear group
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 98-104
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $FL_{\nu}(K)$ be a finitary linear group of degree $\nu$ over a ring $K$, and let $K$ be an associative ring with the unit. We study periodic subgroups of $FL_{\nu}(K)$ in the cases when $K$ is an integral ring (Theorem $1$) and a commutative Noetherian ring (Theorem $2$). In both cases we prove that the periodic subgroups of $FL_{\nu}(K)$ are locally finite and describe their normal structure. In Theorem $3$ we describe the structure of finitely generated solvable subgroups of $FL_{\nu}(K)$ if $K$ is an integral ring, a commutative Noetherian ring, or an arbitrary commutative ring. We show that this structure is most complicated in the latter case.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
finitary linear group, commutative Noetherian ring, locally finite group.
                    
                  
                
                
                @article{TIMM_2017_23_4_a9,
     author = {O. Yu. Dashkova and M. A. Salim and O. A. Shpyrko},
     title = {On the structure of a finitary linear group},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {98--104},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a9/}
}
                      
                      
                    TY - JOUR AU - O. Yu. Dashkova AU - M. A. Salim AU - O. A. Shpyrko TI - On the structure of a finitary linear group JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 98 EP - 104 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a9/ LA - ru ID - TIMM_2017_23_4_a9 ER -
O. Yu. Dashkova; M. A. Salim; O. A. Shpyrko. On the structure of a finitary linear group. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 98-104. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a9/
