On the structure of a finitary linear group
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 98-104

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $FL_{\nu}(K)$ be a finitary linear group of degree $\nu$ over a ring $K$, and let $K$ be an associative ring with the unit. We study periodic subgroups of $FL_{\nu}(K)$ in the cases when $K$ is an integral ring (Theorem $1$) and a commutative Noetherian ring (Theorem $2$). In both cases we prove that the periodic subgroups of $FL_{\nu}(K)$ are locally finite and describe their normal structure. In Theorem $3$ we describe the structure of finitely generated solvable subgroups of $FL_{\nu}(K)$ if $K$ is an integral ring, a commutative Noetherian ring, or an arbitrary commutative ring. We show that this structure is most complicated in the latter case.
Keywords: finitary linear group, commutative Noetherian ring, locally finite group.
@article{TIMM_2017_23_4_a9,
     author = {O. Yu. Dashkova and M. A. Salim and O. A. Shpyrko},
     title = {On the structure of a finitary linear group},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {98--104},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a9/}
}
TY  - JOUR
AU  - O. Yu. Dashkova
AU  - M. A. Salim
AU  - O. A. Shpyrko
TI  - On the structure of a finitary linear group
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 98
EP  - 104
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a9/
LA  - ru
ID  - TIMM_2017_23_4_a9
ER  - 
%0 Journal Article
%A O. Yu. Dashkova
%A M. A. Salim
%A O. A. Shpyrko
%T On the structure of a finitary linear group
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 98-104
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a9/
%G ru
%F TIMM_2017_23_4_a9
O. Yu. Dashkova; M. A. Salim; O. A. Shpyrko. On the structure of a finitary linear group. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 98-104. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a9/