On the structure of a finitary linear group
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 98-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $FL_{\nu}(K)$ be a finitary linear group of degree $\nu$ over a ring $K$, and let $K$ be an associative ring with the unit. We study periodic subgroups of $FL_{\nu}(K)$ in the cases when $K$ is an integral ring (Theorem $1$) and a commutative Noetherian ring (Theorem $2$). In both cases we prove that the periodic subgroups of $FL_{\nu}(K)$ are locally finite and describe their normal structure. In Theorem $3$ we describe the structure of finitely generated solvable subgroups of $FL_{\nu}(K)$ if $K$ is an integral ring, a commutative Noetherian ring, or an arbitrary commutative ring. We show that this structure is most complicated in the latter case.
Keywords: finitary linear group, commutative Noetherian ring, locally finite group.
@article{TIMM_2017_23_4_a9,
     author = {O. Yu. Dashkova and M. A. Salim and O. A. Shpyrko},
     title = {On the structure of a finitary linear group},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {98--104},
     year = {2017},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a9/}
}
TY  - JOUR
AU  - O. Yu. Dashkova
AU  - M. A. Salim
AU  - O. A. Shpyrko
TI  - On the structure of a finitary linear group
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 98
EP  - 104
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a9/
LA  - ru
ID  - TIMM_2017_23_4_a9
ER  - 
%0 Journal Article
%A O. Yu. Dashkova
%A M. A. Salim
%A O. A. Shpyrko
%T On the structure of a finitary linear group
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 98-104
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a9/
%G ru
%F TIMM_2017_23_4_a9
O. Yu. Dashkova; M. A. Salim; O. A. Shpyrko. On the structure of a finitary linear group. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 98-104. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a9/

[1] Dixon M.R., Kurdachenko L.A., Otal J., “On the structure of some infinite dimensional linear groups”, Comm. Algebra, 45:1 (2017), 234–246 | DOI | MR | Zbl

[2] Kurdachenko L.A., Munoz-Escolano J.M., Otal J., “Antifinitary linear groups”, Forum Math., 20:1 (2008), 27–44 | DOI | MR | Zbl

[3] Kurdachenko L.A., Munoz-Escolano J.M., Otal J., “Locally nilpotent linear groups with the weak chain conditions on subgroups of infinite central dimension”, Publ. Mat., 52:1 (2008), 151–169 | DOI | MR | Zbl

[4] Dashkova O.Yu., Dixon M.R., Kurdachenko L.A., “Linear groups with rank restrictions on the subgroups of infinite central dimension”, J. Pure Appl. Algebra, 208:3 (2007), 785–795 | DOI | MR | Zbl

[5] Dixon M.R., Evans M.J., Kurdachenko L.A., “Linear groups with the minimal condition on subgroups of infinite central dimension”, J. Algebra, 277:1 (2004), 172–186 | DOI | MR | Zbl

[6] Kurdachenko L.A., Subbotin I.Ya., “Linear groups with the maximal condition on subgroups of infinite central dimension”, Publ. Mat., 50:1 (2006), 103–131 | DOI | MR | Zbl

[7] Dashkova O.Yu., “Razreshimye beskonechnomernye lineinye gruppy s ogranicheniyami na neabelevy podgruppy beskonechnykh rangov”, Sib. mat. zhurn., 49:6 (2008), 1280–1295 | MR | Zbl

[8] Dashkova O.Yu., “Beskonechnomernye lineinye gruppy s ogranicheniyami na podgruppy, ne yavlyayuschiesya razreshimymi $A_3$-gruppami”, Algebra i logika, 46:5 (2007), 548–559 | MR | Zbl

[9] Dashkova O.Yu., “Lokalno razreshimye beskonechnomernye lineinye gruppy s ogranicheniyami na neabelevy podgruppy beskonechnykh rangov”, Algebra i logika, 47:5 (2008), 601–616 | MR | Zbl

[10] Merzlyakov Yu.I., “Ekvipodgruppy unitreugolnykh grupp: kriterii samonormalizuemosti”, Dokl. AN, 339:6 (1994), 732–735 | Zbl

[11] Levchuk V.M., “Nekotorye lokalno nilpotentnye koltsa i ikh prisoedinennye gruppy”, Mat. zametki, 42:5 (1987), 631–641 | MR | Zbl

[12] Wehrfritz B.A.F., Infinite linear groups, Springer-Verlag, Berlin; Heidelberg; N. Y., 1973, 229 pp. | MR | Zbl

[13] Kargapolov M.I., Merzlyakov Yu.I., Osnovy teorii grupp, Nauka, Moskva, 1972, 240 pp. | MR

[14] Kurosh A.G., Teoriya grupp, Nauka, M., 1967, 648 pp. | MR