Brieskorn manifolds, generated Sieradski groups, and coverings of lens space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 85-97
Voir la notice de l'article provenant de la source Math-Net.Ru
The Brieskorn manifold $\mathscr B(p,q,r)$ is the $r$-fold cyclic covering of the three-dimensional sphere $S^{3}$ branched over the torus knot $T(p,q)$. The generalised Sieradski groups $S(m,p,q)$ are groups with $m$-cyclic presentation $G_{m}(w)$, where the word $w$ has a special form depending on $p$ and $q$. In particular, $S(m,3,2)=G_{m}(w)$ is the group with $m$ generators $x_{1},\ldots,x_{m}$ and $m$ defining relations $w(x_{i}, x_{i+1}, x_{i+2})=1$, where $w(x_{i}, x_{i+1}, x_{i+2}) = x_{i} x_{i+2} x_{i+1}^{-1}$. Cyclic presentations of $S(2n,3,2)$ in the form $G_{n}(w)$ were investigated by Howie and Williams, who showed that the $n$-cyclic presentations are geometric, i.e., correspond to the spines of closed three-dimensional manifolds. We establish an analogous result for the groups $S(2n,5,2)$. It is shown that in both cases the manifolds are $n$-fold branched cyclic coverings of lens spaces. For the classification of the constructed manifolds, we use Matveev's computer program “Recognizer.”
Keywords:
three-dimensional manifold, Brieskorn manifold, cyclically presented group, Sieradski group, branched covering.
Mots-clés : lens space
Mots-clés : lens space
@article{TIMM_2017_23_4_a8,
author = {A. Yu. Vesnin and T. A. Kozlovskaya},
title = {Brieskorn manifolds, generated {Sieradski} groups, and coverings of lens space},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {85--97},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a8/}
}
TY - JOUR AU - A. Yu. Vesnin AU - T. A. Kozlovskaya TI - Brieskorn manifolds, generated Sieradski groups, and coverings of lens space JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 85 EP - 97 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a8/ LA - ru ID - TIMM_2017_23_4_a8 ER -
A. Yu. Vesnin; T. A. Kozlovskaya. Brieskorn manifolds, generated Sieradski groups, and coverings of lens space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 85-97. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a8/