@article{TIMM_2017_23_4_a6,
author = {Yu. Belousov and A. V. Malyutin},
title = {Simple arcs in plane curves and knot diagrams},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {63--76},
year = {2017},
volume = {23},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a6/}
}
Yu. Belousov; A. V. Malyutin. Simple arcs in plane curves and knot diagrams. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 63-76. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a6/
[1] Duzhin S.V., Kombinatornye aspekty teorii invariantov Vasileva, dis. d-r fiz.-mat. nauk, S.-Peterburgskoe otd. Mat. in-ta im. V.A. Steklova RAN, Sankt-Peterburg, 2011, 167 pp.
[2] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974, 455 pp. | MR
[3] Stenli R., Perechislitelnaya kombinatorika, v. 2, Derevya, proizvodyaschie funktsii i simmetricheskie funktsii, Per. s angl., Mir, M., 2009, 767 pp.
[4] Adams C.C., The Knot Book: An elementary introduction to the mathematical theory of knots, W. H. Freeman, N. Y., 1994, 306 pp. | MR | Zbl
[5] Belousov Yu.S., Malyutin A.V., “Estimates on the semi-meandric crossing number of classical knots”, Abstracts of The International Conference “Polynomial Computer Algebra”, 2017, 21–23
[6] Belousov Yu.S., Program for processing Gaussian codes and codes for pre-diagrams [e-resource], 2017 URL: https:github.com/YuryBelousov/curves
[7] Burde G., Zieschang H., Knots, de Gruyter Studies in Mathematics, 5, 2nd ed., Walter de Gruyter Co., Berlin, 2003, 559 pp. | MR | Zbl
[8] Hilton P.J., Pedersen J., “Catalan numbers, their generalization, and their uses”, Math. Intelligencer, 13:2 (1991), 64–75 | DOI | MR | Zbl
[9] Hopcroft J.E., Ullman J.D., Introduction to automata theory, languages, and computation, Addison-Wesley Publ. Co., Boston, 1979, 418 pp. | MR | Zbl
[10] Kauffman L.H., “State models and the Jones polynomial”, Topology, 26:3 (1987), 395–407 | DOI | MR | Zbl
[11] Menasco W., “Closed incompressible surfaces in alternating knot and link complements”, Topology, 23:1 (1984), 37–44 | DOI | MR | Zbl
[12] Menasco W., Thistlethwaite M., “The Tait flyping conjecture”, Bull. Amer. Math. Soc., 25:2 (1991), 403–412 | DOI | MR | Zbl
[13] Menasco W., Thistlethwaite M., “The classification of alternating links”, Ann. Math., 138:1 (1993), 113–171 | DOI | MR | Zbl
[14] Murasugi K., “The Jones polynomial and classical conjectures in knot theory”, Topology, 26:3 (1987), 187–194 | DOI | MR | Zbl
[15] Radovic L., Jablan S., “Meander knots and links”, Filomat, 29:10 (2015), 2381–2392 | DOI | MR | Zbl
[16] Rolfsen D., Knots and links, Publish or Perish Press, Berkeley, Calif., 1976, 439 pp. | MR | Zbl
[17] Thistlethwaite M.B., “A spanning tree expansion of the Jones polynomial”, Topology, 26:3 (1987), 297–309 | DOI | MR | Zbl