Simple arcs in plane curves and knot diagrams
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 63-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study simple arcs in plane curves and in minimal diagrams of classical knots. The main results of the paper are as follows. (1) In each minimal diagram of an arbitrary knot $K$, there exists a simple arc passing through $\min\{\operatorname{cr}(K), 6\}$ crossings, where $\operatorname{cr}(K)$ denotes the crossing number of $K$. (2) For any knot $K$ except for the four simple knots $8_{16}$, $8_{18}$, $9_{40}$, and $10_{120}$ in the notation of the Rolfsen table, there is a minimal diagram with a simple arc passing through $\min\{\operatorname{cr}(K),8\}$ crossings. The first claim is proved using the techniques of combinatorics on words. We introduce a new language for plane curves and their chord diagrams; the symbols of this language correspond to the lengths of the chords. As a result, the statement is reduced to a question in the theory of completeness and avoidability of sets of forbidden patterns: we describe a set of forbidden patterns and prove that the language with no words containing forbidden patterns is finite. To prove the second claim, methods of algorithmic topology are used: the statement reduces to a brute-force search for curves of a special type and then a computer algorithm is described that performs the search; we presents the results of its operation.
Keywords: knot, minimal knot diagram, crossing number, flype, plane curve, combinatorics on words, algorithmic topology.
@article{TIMM_2017_23_4_a6,
     author = {Yu. Belousov and A. V. Malyutin},
     title = {Simple arcs in plane curves and knot diagrams},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {63--76},
     year = {2017},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a6/}
}
TY  - JOUR
AU  - Yu. Belousov
AU  - A. V. Malyutin
TI  - Simple arcs in plane curves and knot diagrams
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 63
EP  - 76
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a6/
LA  - ru
ID  - TIMM_2017_23_4_a6
ER  - 
%0 Journal Article
%A Yu. Belousov
%A A. V. Malyutin
%T Simple arcs in plane curves and knot diagrams
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 63-76
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a6/
%G ru
%F TIMM_2017_23_4_a6
Yu. Belousov; A. V. Malyutin. Simple arcs in plane curves and knot diagrams. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 63-76. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a6/

[1] Duzhin S.V., Kombinatornye aspekty teorii invariantov Vasileva, dis. d-r fiz.-mat. nauk, S.-Peterburgskoe otd. Mat. in-ta im. V.A. Steklova RAN, Sankt-Peterburg, 2011, 167 pp.

[2] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974, 455 pp. | MR

[3] Stenli R., Perechislitelnaya kombinatorika, v. 2, Derevya, proizvodyaschie funktsii i simmetricheskie funktsii, Per. s angl., Mir, M., 2009, 767 pp.

[4] Adams C.C., The Knot Book: An elementary introduction to the mathematical theory of knots, W. H. Freeman, N. Y., 1994, 306 pp. | MR | Zbl

[5] Belousov Yu.S., Malyutin A.V., “Estimates on the semi-meandric crossing number of classical knots”, Abstracts of The International Conference “Polynomial Computer Algebra”, 2017, 21–23

[6] Belousov Yu.S., Program for processing Gaussian codes and codes for pre-diagrams [e-resource], 2017 URL: https:github.com/YuryBelousov/curves

[7] Burde G., Zieschang H., Knots, de Gruyter Studies in Mathematics, 5, 2nd ed., Walter de Gruyter Co., Berlin, 2003, 559 pp. | MR | Zbl

[8] Hilton P.J., Pedersen J., “Catalan numbers, their generalization, and their uses”, Math. Intelligencer, 13:2 (1991), 64–75 | DOI | MR | Zbl

[9] Hopcroft J.E., Ullman J.D., Introduction to automata theory, languages, and computation, Addison-Wesley Publ. Co., Boston, 1979, 418 pp. | MR | Zbl

[10] Kauffman L.H., “State models and the Jones polynomial”, Topology, 26:3 (1987), 395–407 | DOI | MR | Zbl

[11] Menasco W., “Closed incompressible surfaces in alternating knot and link complements”, Topology, 23:1 (1984), 37–44 | DOI | MR | Zbl

[12] Menasco W., Thistlethwaite M., “The Tait flyping conjecture”, Bull. Amer. Math. Soc., 25:2 (1991), 403–412 | DOI | MR | Zbl

[13] Menasco W., Thistlethwaite M., “The classification of alternating links”, Ann. Math., 138:1 (1993), 113–171 | DOI | MR | Zbl

[14] Murasugi K., “The Jones polynomial and classical conjectures in knot theory”, Topology, 26:3 (1987), 187–194 | DOI | MR | Zbl

[15] Radovic L., Jablan S., “Meander knots and links”, Filomat, 29:10 (2015), 2381–2392 | DOI | MR | Zbl

[16] Rolfsen D., Knots and links, Publish or Perish Press, Berkeley, Calif., 1976, 439 pp. | MR | Zbl

[17] Thistlethwaite M.B., “A spanning tree expansion of the Jones polynomial”, Topology, 26:3 (1987), 297–309 | DOI | MR | Zbl