Finite simple groups with four conjugacy classes of maximal subgroups. I
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 52-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the finite simple groups with exactly four conjugacy classes of maximal subgroups. The groups with this property are called $4M$-groups. We prove two theorems. Theorem $1$ gives a complete list of finite simple $4M$-groups, which contains some linear and unitary groups as well Suzuki groups over the field of order $2^r$, where $r$ is a prime ($r>2$). In Theorem $2$ we describe finite nonsolvable $4M$-groups without normal maximal subgroups. Thus, the paper gives a description of finite nonsolvable $4M$-groups that coincide with their commutator group. This study uses the author's earlier results on the structure of finite groups with exactly three conjugacy classes of maximal subgroups and Pazderski's results on the structure of finite groups with exactly two conjugacy classes of maximal subgroups.
Keywords: finite group, maximal subgroup.
Mots-clés : simple group
@article{TIMM_2017_23_4_a5,
     author = {V. A. Belonogov},
     title = {Finite simple groups with four conjugacy classes of maximal subgroups. {I}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {52--62},
     year = {2017},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a5/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - Finite simple groups with four conjugacy classes of maximal subgroups. I
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 52
EP  - 62
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a5/
LA  - ru
ID  - TIMM_2017_23_4_a5
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T Finite simple groups with four conjugacy classes of maximal subgroups. I
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 52-62
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a5/
%G ru
%F TIMM_2017_23_4_a5
V. A. Belonogov. Finite simple groups with four conjugacy classes of maximal subgroups. I. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 52-62. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a5/

[1] Pazderski G., “$\ddot{U}$ber maximal Untergruppen endlicher gruppen”, Math. Nachr., 26:6 (1964), 307–319 | MR | Zbl

[2] Belonogov V.A., “Konechnye gruppy s tremya klassami maksimalnykh podgrupp”, Mat. sb., 131:2 (1986), 225–239 | Zbl

[3] Kholl M., Teoriya grupp, Izd. inostr. lit., M., 1962, 468 pp.

[4] Gorenstein D., Finite groups, Harper Row, N. Y., 1968, 527 pp. | MR | Zbl

[5] Huppert B., Endliche Gruppen. I., Springer, Berlin, 1967, 793 pp. | DOI | MR | Zbl

[6] J.H. Conway, R.T. Curtis, S.P. Norten, R.A. Parker, R.A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[7] Belonogov V., “Finite groups with four classes of conjugate maximal subgroups”, Groups and Graphs, Metrics and Manifolds, Intern. Conf. and PhD-Master Summer School, Abstracts (Yekaterinburg, July 22-30, 2017), Yekaterinburg, 2017, 40

[8] Gorenstein D., Lyons R., Solomon R., The classification of the finite simple groups, Math. Surveys and Monographs, 40, no. 1, Amer. Math. Soc., N. Y., 1994, 165 pp. | DOI | MR | Zbl

[9] Liebeck M. W., Praeger C. E., Saxl J., “The classification of the maximal subgroups of the finite alternating and symmetric groups”, J. Algebra, 111:2 (1987), 365–383 | DOI | MR | Zbl

[10] Wilson R. A., The finite simple groups, Springer, London, 2009, 298 pp. | DOI | MR | Zbl

[11] Carter R. W., Simple groups of Lie type, John Willey and Sons, London, 1972, 331 pp. | MR | Zbl

[12] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, Moskva, 1985, 352 pp. | MR

[13] King O., “The subgroup structure of finite classical groups interms of geometric configurations”, Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., 327, 2005, 29–56 | DOI | MR | Zbl

[14] Bray J.N., Holt D.F., Roney-Dougal C.M., The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser., 407, Cambridge Univ. Press, Cambridge, 2013, 438 pp. | MR | Zbl

[15] Suzuki M., “On a class of doubly transitive groups”, Ann. of Math., 75 (1962), 105–145 | DOI | MR | Zbl

[16] Levchuk V.M., Nuzhin Ya.N., “O stroenii grupp Ri”, Algebra i logika, 24:1 (1985), 26–41 | MR | Zbl

[17] Liebeck M. W., Saxl J., Seitz G. M., “Subgroups of maximal rank in finite exceptional groups of Lie type”, Proc. London Math. Soc. (3), 65:2 (1992), 297–325 | DOI | MR | Zbl