Knot groups and nilpotent approximability
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 43-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study groups of classical links, welded links, and virtual links. For classical braids, it is proved that a braid and its automorphic image are weakly equivalent. This implies the affirmative answer to the question of the coincidence of the groups constructed from a braid and from its automorphic image. We also study the problem of approximability of groups of virtual knots by nilpotent groups. It is known that in a classical knot group the commutator subgroup coincides with the third term of the lower central series, and hence the factorization by the terms of the lower central series yields nothing. We prove that the situation is different for virtual knots. A nontrivial homomorphism of the virtual trefoil group to a nilpotent group of class 4 is constructed. We use the Magnus representation of a free group by power series to construct a homomorphism of the virtual trefoil group to a finite-dimensional algebra. This produces the nontrivial linear representation of the virtual trefoil group by unitriangular matrices of order 8.
Keywords: virtual knots, links, groups.
@article{TIMM_2017_23_4_a4,
     author = {V. G. Bardakov and M. V. Neshchadim},
     title = {Knot groups and nilpotent approximability},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {43--51},
     year = {2017},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a4/}
}
TY  - JOUR
AU  - V. G. Bardakov
AU  - M. V. Neshchadim
TI  - Knot groups and nilpotent approximability
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 43
EP  - 51
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a4/
LA  - ru
ID  - TIMM_2017_23_4_a4
ER  - 
%0 Journal Article
%A V. G. Bardakov
%A M. V. Neshchadim
%T Knot groups and nilpotent approximability
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 43-51
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a4/
%G ru
%F TIMM_2017_23_4_a4
V. G. Bardakov; M. V. Neshchadim. Knot groups and nilpotent approximability. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 43-51. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a4/

[1] Dyer J., Grossman E., “The automorphism groups of the braid groups”, Amer. J. Math., 103:6 (1981), 1151–1169 | DOI | MR | Zbl

[2] Kauffman L.H., “Virtual knot theory”, Eur. J. Comb., 20:7 (1999), 663–690 | DOI | MR | Zbl

[3] Bardakov V.G., “Virtual and welded links and their invariants”, [e-resource], Sib. Elektron. Mat. Izv., 2 (2005), 196–199 | MR | Zbl

[4] Manturov V.O., “On the recognition of virtual braids”, Geom. i Topol., v. 8, Zap. Nauchn. Sem. S. Peterburg. Otdel. Mat. Inst. Steklov. POMI., 299, 2003, 267–286, (in Russian) | MR

[5] Carter J.S., Silver D., Williams S., “Invariants of links in thickened surfaces”, Algebr. Geom. Topol., 14:3 (2014), 1377–1394 | DOI | MR | Zbl

[6] Bardakov V.G., Mikhalchishina Yu.A., Neshchadim M.V., “Representations of virtual braids by automorphisms and virtual knot groups”, J. Knot Theory Ramifications, 26:1 (2017), 1750003, 17 pp. | DOI | MR | Zbl

[7] Bardakov V.G., Bellingeri P., “Groups of virtual and welded links”, J. Knot Theory Ramifications, 23:3 (2014), 1450014, 23 pp. | DOI | MR | Zbl

[8] Bardakov V.G., Mikhailov R.V., “Ob approksimatsionnykh svoistvakh grupp zatseplenii”, Sib. mat. zhurn., 48:3 (2007), 485–495 | DOI | MR | Zbl

[9] Lyndon R.C., Schupp P.E., Combinatorial group theory, Springer-Verlag, Berlin, 1977, 339 pp. | MR | Zbl

[10] Fenn R., Rimanyi R., Rourke C., “The braid-permutation group”, Topology, 36:1 (1997), 123–135 | DOI | MR | Zbl

[11] McCool J., “On basis-conjugating automorphisms of free groups”, Can. J. Math., 38:6 (1986), 1525–1529 | DOI | MR | Zbl

[12] Birman J.S., Braids, links, and mapping class groups, Annals of Math. Studies, 82, Princeton University Press, Princeton, 1974, 228 pp. | MR

[13] Markov A.A., “Osnovy algebraicheskoi teorii kos”, Tr. MIAN, 16, 1945, 1–54

[14] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, 14-e izd., Institut matematiki SO RAN, Novosibirsk, 1999, 134 pp.