Approximation of space curves by polygonal lines in $L_p$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 311-318 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the class $H^{\omega_{1},\omega_{2},\ldots,\omega_{m}}$ of parametric curves in the $m$-dimensional Euclidean space whose coordinate curves belong to the classes $H^{\omega_{i}}[0,L]$ $(i=\overline{1,m})$, respectively; i.e., their moduli of continuity are dominated by the functions $\omega_{i}$. We solve the problem of finding an upper bound for the mutual deviation in the norm of the space $L_{p}[0,L]$ $(1\le p\infty)$ of two curves from this class under the condition that they intersect at $N$ $(N\ge2)$ points of the interval $[0,L]$. We also find the exact value for the upper bound of the deviation in the $L_{p}$ metric of a curve $\Gamma$ belonging to a class $H^{\omega_{1},...,\omega_{m}}$ defined by upper convex moduli of continuity $\omega_{i}(t)$, $i=\overline{1,m}$, from an interpolation polygonal line inscribed in this curve with $N$ $(N\ge2)$ interpolation nodes. The obtained results generalize V. F. Storchai's result on the approximation of continuous functions by interpolation polygonal lines in the metric of the space $L_p[0,L]$ $(1\le p\le\infty)$.
Keywords: parametric curves, modulus of continuity, interpolation broken lines.
@article{TIMM_2017_23_4_a29,
     author = {A. A. Shabozova},
     title = {Approximation of space curves by polygonal lines in $L_p$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {311--318},
     year = {2017},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a29/}
}
TY  - JOUR
AU  - A. A. Shabozova
TI  - Approximation of space curves by polygonal lines in $L_p$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 311
EP  - 318
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a29/
LA  - ru
ID  - TIMM_2017_23_4_a29
ER  - 
%0 Journal Article
%A A. A. Shabozova
%T Approximation of space curves by polygonal lines in $L_p$
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 311-318
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a29/
%G ru
%F TIMM_2017_23_4_a29
A. A. Shabozova. Approximation of space curves by polygonal lines in $L_p$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 311-318. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a29/

[1] Sendov Bl., Khausdorfovye priblizheniya, Izd-vo Bolgarskoi AN, Sofiya, 1979, 372 pp. | MR

[2] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[3] Martynyuk V.T., “O priblizhenii lomanymi krivykh, zadannykh parametricheskimi uravneniyami, v khausdorfovoi metrike”, Ukr. mat. zhurn., 28:1 (1976), 87–92 | MR | Zbl

[4] Nazarenko N.A., “O lokalnom vosstanovlenie krivykh s pomoschyu parametricheskikh splainov”, Geometricheskaya teorii funktsii i topologiya, sb. tr., Kiev, 1981, 55–62 | Zbl

[5] Vakarchuk S.B., “O priblizhenii krivykh, zadannykh parametricheskom vide, pri pomoschi splain-funktsii”, Ukr. mat. zhurn., 35:3 (1983), 352–355 | MR | Zbl

[6] Vakarchuk S.B., “Tochnye konstanty priblizheniya ploskikh krivykh polinomialnymi krivymi i lomanymi”, Izv. Vuzov. Matematika, 1988, no. 2, 14–19

[7] Korneichuk N.P., “Ob optimalnom kodirovaniya vektor-funktsii”, Ukr. mat. zhurn., 40:6 (1988), 737–743 | MR

[8] Korneichuk N.P., “Priblizhenie i optimalnoe gladkikh ploskikh krivykh”, Ukr. mat. zhurn., 41:4 (1989), 492–499 | MR

[9] Shabozov M.Sh., Shabozova A.A., “Priblizhenie krivykh lomanymi”, Vestn. S.-Peterb. un-ta Ser. 1, 2013, no. 2, 68–76 | Zbl

[10] Nikolskii S.M., Kvadraturnye formuly, Nauka, M., 1986, 256 pp. | MR

[11] Storchai V.F., “Ob otklonenii lomanykh v metrike $L_{p}.$”, Mat. zametki, 5:1 (1969), 31–37 | MR

[12] Shabozova A.A., “K poligonalnoi interpolyatsii krivykh v prostranstve $\mathbb{R}^{m}$”, Izv. TulGU, 2015, no. 4, 107–112