Voir la notice du chapitre de livre
@article{TIMM_2017_23_4_a28,
author = {M. Yu. Khachai and D. M. Khachai and V. S. Pankratov},
title = {Attainable best guarantee for the accuracy of $k$-medians clustering in~$[0,1]$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {301--310},
year = {2017},
volume = {23},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a28/}
}
TY - JOUR AU - M. Yu. Khachai AU - D. M. Khachai AU - V. S. Pankratov TI - Attainable best guarantee for the accuracy of $k$-medians clustering in $[0,1]$ JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 301 EP - 310 VL - 23 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a28/ LA - ru ID - TIMM_2017_23_4_a28 ER -
%0 Journal Article %A M. Yu. Khachai %A D. M. Khachai %A V. S. Pankratov %T Attainable best guarantee for the accuracy of $k$-medians clustering in $[0,1]$ %J Trudy Instituta matematiki i mehaniki %D 2017 %P 301-310 %V 23 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a28/ %G ru %F TIMM_2017_23_4_a28
M. Yu. Khachai; D. M. Khachai; V. S. Pankratov. Attainable best guarantee for the accuracy of $k$-medians clustering in $[0,1]$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 301-310. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a28/
[1] Aggarwal C.C., Reddy C.K., Data clustering: algorithms and applications, Chapman Hall/CRC Data Mining and Knowledge Discovery Ser., Taylor Francis Inc., Bosa Roca, 2013, 652 pp. | MR
[2] Ben-David S., Computational feasibility of clustering under clusterability assumptions, [e-resource]. CoRR abs/1501.00437, 2015, arXiv: 1501.00437
[3] Duda R.O., Hart P.E., Stork D.G., Pattern classification, Wile, N. Y., 2001, 680 pp. | MR | Zbl
[4] A. Gronlund, K.G. Larsen, A. Mathiasen, J.S. Nielsen, Fast exact $k$-means, $k$-medians and bregman divergence clustering in 1d, [e-resource]. CoRR abs/1701.07204, 2017, arXiv: 1701.07204
[5] Guruswami V., Indyk P., “Embeddings and non-approximability of geometric problems”, Proc. of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '03), Society for industrial and applied mathematics, Philadelphia, 2003, 537–538 | MR | Zbl
[6] Har-Peled S., Mazumdar S., “On coresets for $k$-means and $k$-median clustering”, Proc. of the Thirty-Sixth Annual ACM Symposium on Theory of Computing (STOC '04), ACM, N. Y., 2004, 291–300 | DOI | MR | Zbl
[7] Khachay M., Neznakhina K., “Generalized pyramidal tours for the generalized traveling salesman problem”, Lecture Notes in Computer Science, 10627, 2017, 265–277 | DOI
[8] Khachay M., Pankratov V., Khachay D., “Attainable best guarantee for the accuracy of $k$-medians clustering in [0,1]”, 8th International Conf. Optimization and Applications (OPTIMA2017), eds. eds. Y.G. Evtushenko, et al., CEUR Workshop Proceedings, Aachen, 2017, 322–327
[9] Kumar A., Sabharwal Y., Sen S., “Linear-time approximation schemes for clustering problems in any dimensions”, J. ACM, 57(2), Feb (2010), 5:1-5:32 | DOI | MR