@article{TIMM_2017_23_4_a27,
author = {T. N. Fomenko},
title = {Preservation of the existence of coincidence points under some discrete transformations of a pair of mappings of metric spaces},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {292--300},
year = {2017},
volume = {23},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a27/}
}
TY - JOUR AU - T. N. Fomenko TI - Preservation of the existence of coincidence points under some discrete transformations of a pair of mappings of metric spaces JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 292 EP - 300 VL - 23 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a27/ LA - ru ID - TIMM_2017_23_4_a27 ER -
%0 Journal Article %A T. N. Fomenko %T Preservation of the existence of coincidence points under some discrete transformations of a pair of mappings of metric spaces %J Trudy Instituta matematiki i mehaniki %D 2017 %P 292-300 %V 23 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a27/ %G ru %F TIMM_2017_23_4_a27
T. N. Fomenko. Preservation of the existence of coincidence points under some discrete transformations of a pair of mappings of metric spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 292-300. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a27/
[1] “On continuation methods for contractive and nonexpansive mappings”, Recent Advances on Metric Fixed Point Theory, Universidad de Sevilla, Sevilla, 1996, 19–29
[2] Podoprikhin D.A., Fomenko T.N., “Sokhranenie svoistva nepodvizhnoi tochki i svoistva sovpadeniya pri gomotopii otobrazhenii uporyadochennykh mnozhestv”, Dokl. AN, 477:4 (2017), 402–405 | DOI
[3] Brondsted A., “On a lemma of Bishop and Phelps”, Pacific J. Math., 55:2 (1974), 335–341 | DOI | MR | Zbl
[4] Walker J.W., “Isotone relations and the fixed point property for posets”, Discr. Math., 48:2–3 (1984), 275–288 | DOI | MR | Zbl
[5] Stong R.E., “Finite topological spaces”, Trans. Amer. Math. Soc., 123:2 (1966), 325–340 | DOI | MR | Zbl
[6] Handbook of metric fixed point theory, eds. eds. W.A. Kirk, B. Sims, Springer Science Business Media, NY, 2001, 704 pp. | DOI | MR
[7] Podoprikhin D.A., Fomenko T.N., “O sovpadeniyakh semeistv otobrazhenii uporyadochennykh mnozhestv”, Dokl. RAN. Matematika, 471:1 (2016), 16–18 | DOI | MR | Zbl
[8] Fomenko T.N., Podoprikhin D., “Common fixed points and coincidences of mapping families on partially ordered set”, Topology Appl., 221 (2017), 275–285 | DOI | MR | Zbl
[9] Arutyunov A.V., Zhukovskii E.S., Zhukovskii S.E., “O tochkakh sovpadeniya otobrazhenii v chastichno uporyadochennykh prostranstvakh”, Dokl. RAN, 88:3 (2013), 710–713 | MR | Zbl
[10] Arutyunov A.V., Zhukovskiy E.S., and Zhukovskiy S.E., “Coincidence points principle for mappings in partially ordered spaces”, Topology Appl., 179 (2015), 13–33 | DOI | MR | Zbl
[11] Fomenko T.N., Podoprikhin D.A., “Fixed points and coincidences of mappings of partially ordered sets”, J. Fixed Point Theory Appl., 18:4 (2016), 823–842 | DOI | MR | Zbl
[12] Podoprikhin D.A., “Fixed points of mappings on ordered sets”, Lobachevskii J. Math., 38:6 (2017), 1069–1074 | DOI