Virtual $3$-manifolds of complexity $1$ and~$2$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 257-264

Voir la notice de l'article provenant de la source Math-Net.Ru

Matveev in 2009 introduced the notion of virtual $3$-manifold, which generalizes the classical notion of $3$-manifold. A virtual manifold is an equivalence class of so-called special polyhedra. Each virtual manifold determines a $3$-manifold with nonempty boundary and $\mathbb{R}P^2$-singularities. Many invariants of manifolds, such as Turaev–Viro invariants, can be extended to virtual manifolds. The complexity of a virtual $3$-manifold is $k$ if its equivalence class contains a special polyhedron with $k$ true vertices and contains no special polyhedra with a smaller number of true vertices. In this paper we give a complete list of virtual $3$-manifolds of complexity $1$ and present two-sided bounds for the number of virtual $3$-manifolds of complexity $2$. The question of the complete classification for virtual $3$-manifolds of complexity $2$ remains open.
Keywords: virtual $3$-manifold, complexity.
Mots-clés : classification
@article{TIMM_2017_23_4_a24,
     author = {E. A. Sbrodova and V. V. Tarkaev and E. A. Fominykh and E. V. Shumakova},
     title = {Virtual $3$-manifolds of complexity $1$ and~$2$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {257--264},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a24/}
}
TY  - JOUR
AU  - E. A. Sbrodova
AU  - V. V. Tarkaev
AU  - E. A. Fominykh
AU  - E. V. Shumakova
TI  - Virtual $3$-manifolds of complexity $1$ and~$2$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 257
EP  - 264
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a24/
LA  - ru
ID  - TIMM_2017_23_4_a24
ER  - 
%0 Journal Article
%A E. A. Sbrodova
%A V. V. Tarkaev
%A E. A. Fominykh
%A E. V. Shumakova
%T Virtual $3$-manifolds of complexity $1$ and~$2$
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 257-264
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a24/
%G ru
%F TIMM_2017_23_4_a24
E. A. Sbrodova; V. V. Tarkaev; E. A. Fominykh; E. V. Shumakova. Virtual $3$-manifolds of complexity $1$ and~$2$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 257-264. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a24/