Virtual $3$-manifolds of complexity $1$ and~$2$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 257-264
Voir la notice de l'article provenant de la source Math-Net.Ru
Matveev in 2009 introduced the notion of virtual $3$-manifold, which generalizes the classical notion of $3$-manifold. A virtual manifold is an equivalence class of so-called special polyhedra. Each virtual manifold determines a $3$-manifold with nonempty boundary and $\mathbb{R}P^2$-singularities. Many invariants of manifolds, such as Turaev–Viro invariants, can be extended to virtual manifolds. The complexity of a virtual $3$-manifold is $k$ if its equivalence class contains a special polyhedron with $k$ true vertices and contains no special polyhedra with a smaller number of true vertices. In this paper we give a complete list of virtual $3$-manifolds of complexity $1$ and present two-sided bounds for the number of virtual $3$-manifolds of complexity $2$. The question of the complete classification for virtual $3$-manifolds of complexity $2$ remains open.
Keywords:
virtual $3$-manifold, complexity.
Mots-clés : classification
Mots-clés : classification
@article{TIMM_2017_23_4_a24,
author = {E. A. Sbrodova and V. V. Tarkaev and E. A. Fominykh and E. V. Shumakova},
title = {Virtual $3$-manifolds of complexity $1$ and~$2$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {257--264},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a24/}
}
TY - JOUR AU - E. A. Sbrodova AU - V. V. Tarkaev AU - E. A. Fominykh AU - E. V. Shumakova TI - Virtual $3$-manifolds of complexity $1$ and~$2$ JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 257 EP - 264 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a24/ LA - ru ID - TIMM_2017_23_4_a24 ER -
%0 Journal Article %A E. A. Sbrodova %A V. V. Tarkaev %A E. A. Fominykh %A E. V. Shumakova %T Virtual $3$-manifolds of complexity $1$ and~$2$ %J Trudy Instituta matematiki i mehaniki %D 2017 %P 257-264 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a24/ %G ru %F TIMM_2017_23_4_a24
E. A. Sbrodova; V. V. Tarkaev; E. A. Fominykh; E. V. Shumakova. Virtual $3$-manifolds of complexity $1$ and~$2$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 257-264. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a24/