Voir la notice du chapitre de livre
Mots-clés : classification
@article{TIMM_2017_23_4_a24,
author = {E. A. Sbrodova and V. V. Tarkaev and E. A. Fominykh and E. V. Shumakova},
title = {Virtual $3$-manifolds of complexity $1$ and~$2$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {257--264},
year = {2017},
volume = {23},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a24/}
}
TY - JOUR AU - E. A. Sbrodova AU - V. V. Tarkaev AU - E. A. Fominykh AU - E. V. Shumakova TI - Virtual $3$-manifolds of complexity $1$ and $2$ JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 257 EP - 264 VL - 23 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a24/ LA - ru ID - TIMM_2017_23_4_a24 ER -
E. A. Sbrodova; V. V. Tarkaev; E. A. Fominykh; E. V. Shumakova. Virtual $3$-manifolds of complexity $1$ and $2$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 257-264. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a24/
[1] Matveev S.V., “Virtual 3-manifolds”, Sib. elektron. mat. izv., 6 (2009), 518–521 | MR | Zbl
[2] Vesnin A.Yu., Turaev V.G., Fominykh E.A., “Slozhnost virtualnykh trekhmernykh mnogoobrazii”, Mat. sb., 207:11 (2016), 4–24 | DOI | MR | Zbl
[3] Matveev S., Algorithmic topology and classification of 3-manifolds, Algorithms and Computation in Mathematics, 9, Springer-Verlag, Berlin; Heidelberg, 2007, 492 pp. | DOI | MR | Zbl
[4] Turaev V.G., Viro O.Y., “State sum invariants of $3$-manifolds and quantum $6j$-symbols”, Topology, 31:4 (1992), 865–902 | DOI | MR | Zbl
[5] Burton B., “The pachner graph and the simplification of 3-sphere triangulations”, Proc. of the Twenty-Seventh Annual Symposium on Computational Geometry (SCG'11), ACM, N.Y., 2011, 153–162 | DOI | MR | Zbl
[6] Atlas of 3-Manifolds [site]: A free software 3-manifold recognizer, data obrascheniya: 15.09.2017 URL: http://matlas.math.csu.ru
[7] Culler M., Dunfield N., Goerner M., Weeks J., SnapPy, a computer program for studying the geometry and topology of $3$-manifolds [e-resource]., data obrascheniya: 15.09.2017 URL: http://snappy.computop.org
[8] Fujii M., “Hyperbolic $3$-manifolds with totally geodesic boundary which are decomposed into hyperbolic truncated tetrahedra”, Tokyo J. Math., 13:2 (1990), 353–373 | DOI | MR | Zbl
[9] Callahan P., Hildebrand M., Weeks J., “A census of cusped hyperbolic $3$-manifolds”, Mathematics of Computation, 68:225 (1999), 321–332 | DOI | MR | Zbl