Virtual $3$-manifolds of complexity $1$ and $2$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 257-264
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Matveev in 2009 introduced the notion of virtual $3$-manifold, which generalizes the classical notion of $3$-manifold. A virtual manifold is an equivalence class of so-called special polyhedra. Each virtual manifold determines a $3$-manifold with nonempty boundary and $\mathbb{R}P^2$-singularities. Many invariants of manifolds, such as Turaev–Viro invariants, can be extended to virtual manifolds. The complexity of a virtual $3$-manifold is $k$ if its equivalence class contains a special polyhedron with $k$ true vertices and contains no special polyhedra with a smaller number of true vertices. In this paper we give a complete list of virtual $3$-manifolds of complexity $1$ and present two-sided bounds for the number of virtual $3$-manifolds of complexity $2$. The question of the complete classification for virtual $3$-manifolds of complexity $2$ remains open.
Keywords: virtual $3$-manifold, complexity.
Mots-clés : classification
@article{TIMM_2017_23_4_a24,
     author = {E. A. Sbrodova and V. V. Tarkaev and E. A. Fominykh and E. V. Shumakova},
     title = {Virtual $3$-manifolds of complexity $1$ and~$2$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {257--264},
     year = {2017},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a24/}
}
TY  - JOUR
AU  - E. A. Sbrodova
AU  - V. V. Tarkaev
AU  - E. A. Fominykh
AU  - E. V. Shumakova
TI  - Virtual $3$-manifolds of complexity $1$ and $2$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 257
EP  - 264
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a24/
LA  - ru
ID  - TIMM_2017_23_4_a24
ER  - 
%0 Journal Article
%A E. A. Sbrodova
%A V. V. Tarkaev
%A E. A. Fominykh
%A E. V. Shumakova
%T Virtual $3$-manifolds of complexity $1$ and $2$
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 257-264
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a24/
%G ru
%F TIMM_2017_23_4_a24
E. A. Sbrodova; V. V. Tarkaev; E. A. Fominykh; E. V. Shumakova. Virtual $3$-manifolds of complexity $1$ and $2$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 257-264. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a24/

[1] Matveev S.V., “Virtual 3-manifolds”, Sib. elektron. mat. izv., 6 (2009), 518–521 | MR | Zbl

[2] Vesnin A.Yu., Turaev V.G., Fominykh E.A., “Slozhnost virtualnykh trekhmernykh mnogoobrazii”, Mat. sb., 207:11 (2016), 4–24 | DOI | MR | Zbl

[3] Matveev S., Algorithmic topology and classification of 3-manifolds, Algorithms and Computation in Mathematics, 9, Springer-Verlag, Berlin; Heidelberg, 2007, 492 pp. | DOI | MR | Zbl

[4] Turaev V.G., Viro O.Y., “State sum invariants of $3$-manifolds and quantum $6j$-symbols”, Topology, 31:4 (1992), 865–902 | DOI | MR | Zbl

[5] Burton B., “The pachner graph and the simplification of 3-sphere triangulations”, Proc. of the Twenty-Seventh Annual Symposium on Computational Geometry (SCG'11), ACM, N.Y., 2011, 153–162 | DOI | MR | Zbl

[6] Atlas of 3-Manifolds [site]: A free software 3-manifold recognizer, data obrascheniya: 15.09.2017 URL: http://matlas.math.csu.ru

[7] Culler M., Dunfield N., Goerner M., Weeks J., SnapPy, a computer program for studying the geometry and topology of $3$-manifolds [e-resource]., data obrascheniya: 15.09.2017 URL: http://snappy.computop.org

[8] Fujii M., “Hyperbolic $3$-manifolds with totally geodesic boundary which are decomposed into hyperbolic truncated tetrahedra”, Tokyo J. Math., 13:2 (1990), 353–373 | DOI | MR | Zbl

[9] Callahan P., Hildebrand M., Weeks J., “A census of cusped hyperbolic $3$-manifolds”, Mathematics of Computation, 68:225 (1999), 321–332 | DOI | MR | Zbl