On the Oikawa and Arakawa theorems for graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 243-252 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The present paper is devoted to the further development of the discrete theory of Riemann surfaces, which was started in the papers by M. Baker and S. Norine at the beginning of the century. This theory considers finite graphs as analogs of compact Riemann surfaces and branched coverings of graphs as holomorphic maps. The genus of a graph is defined as the rank of its fundamental group. The main object of investigation in the paper is automorphism groups of a graph acting freely on the set of arcs. These groups are discrete analogs of groups of conformal automorphisms of a Riemann surface. The celebrated Hurwitz theorem (1893) states that the order of the group of conformal automorphisms of a compact Riemann surface of genus $g>1$ does not exceed $84(g-1)$. Later, K. Oikawa and T. Arakawa refined this bound in the case of groups that fix several finite sets of prescribed cardinalities. This paper provides proofs of discrete versions of the mentioned theorems. In addition, a graph-theoretic version of the E. Bujalance and G. Gromadzki result improving the Arakawa theorem is obtained.
Keywords: Riemann surface, Riemann–Hurwitz formula, graph, harmonic map.
Mots-clés : automorphism group
@article{TIMM_2017_23_4_a22,
     author = {A. D. Mednykh and I. A. Mednykh and R. Nedelya},
     title = {On the {Oikawa} {and~Arakawa~theorems} for graphs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {243--252},
     year = {2017},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a22/}
}
TY  - JOUR
AU  - A. D. Mednykh
AU  - I. A. Mednykh
AU  - R. Nedelya
TI  - On the Oikawa and Arakawa theorems for graphs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 243
EP  - 252
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a22/
LA  - ru
ID  - TIMM_2017_23_4_a22
ER  - 
%0 Journal Article
%A A. D. Mednykh
%A I. A. Mednykh
%A R. Nedelya
%T On the Oikawa and Arakawa theorems for graphs
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 243-252
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a22/
%G ru
%F TIMM_2017_23_4_a22
A. D. Mednykh; I. A. Mednykh; R. Nedelya. On the Oikawa and Arakawa theorems for graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 243-252. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a22/

[1] Baker M., Norine S., “Harmonic morphisms and hyperelliptic graphs”, Int. Math. Res. Notes, 15 (2009), 2914–2955 | DOI | MR | Zbl

[2] Corry S., “Genus bounds for harmonic group actions on finite graphs”, Int. Math. Res. Not., 19 (2011), 4515–4533 | DOI | MR | Zbl

[3] Mednykh A.D., On the Riemann-Hurwitz formula for graph coverings, [e-resource], 2015, 8 pp., arXiv: https://arxiv.org/pdf/1505.00321.pdf

[4] Mednykh A.D., Nedelya R., “Garmonicheskie otobrazheniya grafov i teorema Rimana - Gurvitsa”, Dokl. AN, 466:2 (2016), 144–147 | DOI | MR | Zbl

[5] Hurwitz A., “Uber algebraische Gebilde mit eindeutigen Transformationen in sich”, Math. Ann., 41 (1893), 403–442 | DOI | MR

[6] Mednykh I.A., “O teoremakh Farkasha i Akkoly dlya grafov”, Dokl. AN, 448:4 (2013), 387–391 | DOI | Zbl

[7] Mednykh I.A., “Diskretnye analogi teorem Farkasha i Akkoly o giperelliptichnosti nakrytii nad rimanovoi poverkhnostyu roda dva”, Mat. zametki, 96:1 (2014), 69–81 | DOI

[8] Limonov M.P., “Non-regular graph coverings and lifting the hyperelliptic involution”, Siberian Elect. Math. Rep., 12 (2015), 372–380 | DOI | MR | Zbl

[9] Limonov M.P., “Accola theorem on hyperelliptic graphs”, Ars Mathematica Contemporanea, 11:1 (2016), 91–99 | MR | Zbl

[10] Mednykh A., Mednykh I., “On Wiman's theorem for graphs”, Discrete Math., 338 (2015), 1793–1800 | DOI | MR | Zbl

[11] Oikawa K., “Note on conformal mapping of a Riemann surface onto itself”, Kodai Math. Sem. Rep., 8 (1956), 23–30 | DOI | MR | Zbl

[12] Arakawa T., “Automorphism groups of compact Riemann surfaces with invariant subsets”, Osaka J. Math., 37 (2000), 823–846 | MR | Zbl

[13] Bujalance E., Gromadzki G., “On automorphisms Of Klein surfaces with invariant subsets”, Osaka J. Math., 50 (2013), 251–269 | MR | Zbl

[14] Mednykh A.D., Mednykh I.A., Nedelya R., “O nekotorykh obobscheniyakh teoremy Gurvitsa dlya grupp, deistvuyuschikh na grafe”, Dokl. AN, 460:5 (2015), 520–524 | DOI | Zbl

[15] Malnic A., Nedela, R., Skoviera M., “Lifting graph automorphisms by voltage assignments”, European J. Combin., 21:7 (2000), 927–947 | DOI | MR | Zbl