Automorphisms of strongly regular graphs with parameters $(1305,440,115,165)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 232-242 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A graph $\varGamma$ is called $t$-isoregular if, for any $i\le t$ and any $i$-vertex subset $S$, the number $\varGamma(S)$ depends only on the isomorphism class of the subgraph induced by $S$. A graph $\varGamma$ on $v$ vertices is called absolutely isoregular if it is $(v-1)$-isoregular. It is known that each $5$-isoregular graph is absolutely isoregular, and such graphs have been fully described. Each exactly $4$-isoregular graph is either a pseudogeometric graph for pG$_r(2r,2r^3+3r^2-1)$ or its complement. By Izo$(r)$ we denote a pseudogeometric graph for pG$_r(2r,2r^3+3r^2-1)$. Graphs Izo$(r)$ do not exist for an infinite set of values of $r$ ($r=3,4,6,10,\ldots$). The existence of Izo$(5)$ is unknown. In this work we find possible automorphisms for the neighborhood of an edge from Izo$(5)$.
Keywords: isoregular graph, strongly regular graph, pseudogeometric graph.
@article{TIMM_2017_23_4_a21,
     author = {A. A. Makhnev and D. V. Paduchikh and M. M. Khamgokova},
     title = {Automorphisms of strongly regular graphs with parameters $(1305,440,115,165)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {232--242},
     year = {2017},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a21/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
AU  - M. M. Khamgokova
TI  - Automorphisms of strongly regular graphs with parameters $(1305,440,115,165)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 232
EP  - 242
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a21/
LA  - ru
ID  - TIMM_2017_23_4_a21
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%A M. M. Khamgokova
%T Automorphisms of strongly regular graphs with parameters $(1305,440,115,165)$
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 232-242
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a21/
%G ru
%F TIMM_2017_23_4_a21
A. A. Makhnev; D. V. Paduchikh; M. M. Khamgokova. Automorphisms of strongly regular graphs with parameters $(1305,440,115,165)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 232-242. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a21/

[1] Cameron P., Van Lint J., Designs, graphs, codes and their links | MR

[2] Bannai E., Munemasa A., Venkov B., “The nonexistence of certain tight spherical designs”, Algebra and Analis, 16:4 (2004), 1–23 | MR

[3] Nebe G., Venkov B., “On tight spherical designs”, Algebra and Analis, 24:3 (2012), 163–171 | MR

[4] Makhnev A.A., “On nonexistence of strongly regular graphs with parameters (486,165,36,66)”, Ukrainskii Mat. Zh., 54:7 (2002), 941–949 | MR | Zbl

[5] Makhnev A.A., Khamgokova M.M., “Avtomorfizmy silno regulyarnogo grafa s parametrami (532,156,30,52)”, Sib. elektron. mat. izv., 12 (2015), 930–939 | MR | Zbl

[6] Brouwer A.E., Haemers W.H., “The Gewirtz graph: an exercize in the theory of graph spectra”, European J. Combin., 14:3 (1993), 397–407 | DOI | MR | Zbl

[7] Cameron P.J., Permutation Groups, Cambridge University Press, Cambridge, 1999, 220 pp. | DOI | MR | Zbl

[8] Gavrilyuk A.L., Makhnev A.A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii {56,45,1;1,9,56}”, Dokl. RAN, 432:5 (2010), 583–587 | Zbl

[9] MacKay M., Siran J., “Search for properties of the missing Moore graph”, Linear Algebra Appl., 432:9 (2010), 2381–2398 | DOI | MR

[10] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Siberian Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl