The structure of the fixed point set of a reducible monotone subhomogeneous mapping
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 222-231 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We analyze the structure of the set of nontrivial equilibria for a monotone subhomogeneous discrete-time dynamical system on the nonnegative orthant of a finite-dimensional Euclidean space under as weak additional assumptions as possible. We use the notion of local irreducibility of a nonlinear mapping introduced by the authors. It is shown that, if a monotone subhomogeneous mapping has positive fixed points lying on different rays starting at the origin, then this mapping is reducible at at least one of them and a part of the components of the mapping are positively homogeneous on segments of these rays containing the positive fixed points. In particular, for concave mappings, this means the reducibility of the mapping at zero. As a result, we obtain a generalization of the theorem on the uniqueness of the ray containing the positive fixed points of such a mapping with the only additional assumption that the mapping is irreducible on the set of its positive fixed points. In this case, the set of all positive fixed points of a monotone subhomogeneous mapping forms a continuous part of some ray starting at the origin.
Keywords: monotone mapping, subhomogeneous mapping, local irreducibility of a mapping, fixed points.
@article{TIMM_2017_23_4_a20,
     author = {Vl. D. Mazurov and A. I. Smirnov},
     title = {The structure of the fixed point set of a reducible monotone subhomogeneous mapping},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {222--231},
     year = {2017},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a20/}
}
TY  - JOUR
AU  - Vl. D. Mazurov
AU  - A. I. Smirnov
TI  - The structure of the fixed point set of a reducible monotone subhomogeneous mapping
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 222
EP  - 231
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a20/
LA  - ru
ID  - TIMM_2017_23_4_a20
ER  - 
%0 Journal Article
%A Vl. D. Mazurov
%A A. I. Smirnov
%T The structure of the fixed point set of a reducible monotone subhomogeneous mapping
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 222-231
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a20/
%G ru
%F TIMM_2017_23_4_a20
Vl. D. Mazurov; A. I. Smirnov. The structure of the fixed point set of a reducible monotone subhomogeneous mapping. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 222-231. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a20/

[1] Morishima M., Ravnovesie, ustoichivost, rost, Nauka, M., 1972, 280 pp.

[2] Nikaido Kh., Vypuklye struktury i matematicheskaya ekonomika, Mir, M., 1972, 518 pp.

[3] Lemmens B., Nussbaum R.D., Nonlinear Perron-Frobenius Theory, Cambridge Tracts in Math., 189, Cambridge Univ. Press, Cambridge, 2012, 323 pp. | MR | Zbl

[4] Krause U., Positive dynamical systems in discrete time: theory, models and applications, Walter de Gruyter GmbH, Berlin; Munich; Boston, 2015, 363 pp. | MR

[5] Smirnov A.I., Ravnovesie i ustoichivost subodnorodnykh monotonnykh diskretnykh dinamicheskikh sistem, Izd-vo UIEUiP, Ekaterinburg, 2016, 318 pp.

[6] Smirnov A.I., “Subodnorodnye monotonnye otobrazheniya v multiplikativnoi i additivnoi nelineinoi teorii Perrona - Frobeniusa”, Vestn. UIEUiP, 2016, no. 2(35), 8–25

[7] Smirnov A.I., “Subodnorodnye otobrazheniya v teorii monotonnykh dinamicheskikh sistem”, Vestn. UIEUiP, 2016, no. 1(34), 68–80 | MR

[8] Smirnov A.I., “Analiz razvitiya populyatsii v usloviyakh nestatsionarnoi sredy”, Metody dlya nestatsionarnykh zadach matematicheskogo programmirovaniya, IMM UNTs AN SSSR, Sverdlovsk, 1979, 94–103

[9] Takac P., “Asymptotic behavior of discrete-time semigroups of sublinear, strongly increasing mappings with applications to biology”, Nonlinear Anal. Theory Meth. Appl., 14(1) (1990), 35–42 | DOI | MR | Zbl

[10] Hirsch M.W., Smith H.L., “Monotone Dynamical Systems”, Handbook of Differential Eqns: Ordinary Differential Eqns, v. II, eds. eds. A. Canada, P. Drabek, A. Fonda, B.V., Elsevier, Amsterdam, 2005, 239–357 | MR | Zbl

[11] Smirnov A.I., “O nekotorykh oslableniyakh ponyatiya nerazlozhimosti”, Vestn. UIEUiP, 2016, no. 2(35), 26–30

[12] Mazurov Vl.D., Smirnov A.I., “Usloviya nerazlozhimosti i primitivnosti monotonnykh subodnorodnykh otobrazhenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:3 (2016), 169–177 | DOI | MR

[13] Lemmens B., Roelands M., “Unique geodesics for Thompson's metric”, Ann. Institut Fourier, 65:1 (2015), 315–348 | DOI | MR | Zbl

[14] Opoitsev V.I., Ravnovesie i ustoichivost v modelyakh kollektivnogo povedeniya, Nauka, M., 1977, 245 pp. | MR