The structure of the fixed point set of a reducible monotone subhomogeneous mapping
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 222-231
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We analyze the structure of the set of nontrivial equilibria for a monotone subhomogeneous discrete-time dynamical system on the nonnegative orthant of a finite-dimensional Euclidean space under as weak additional assumptions as possible. We use the notion of local irreducibility of a nonlinear mapping introduced by the authors. It is shown that, if a monotone subhomogeneous mapping has positive fixed points lying on different rays starting at the origin, then this mapping is reducible at at least one of them and a part of the components of the mapping are positively homogeneous on segments of these rays containing the positive fixed points. In particular, for concave mappings, this means the reducibility of the mapping at zero. As a result, we obtain a generalization of the theorem on the uniqueness of the ray containing the positive fixed points of such a mapping with the only additional assumption that the mapping is irreducible on the set of its positive fixed points. In this case, the set of all positive fixed points of a monotone subhomogeneous mapping forms a continuous part of some ray starting at the origin.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
monotone mapping, subhomogeneous mapping, local irreducibility of a mapping, fixed points.
                    
                  
                
                
                @article{TIMM_2017_23_4_a20,
     author = {Vl. D. Mazurov and A. I. Smirnov},
     title = {The structure of the fixed point set of a reducible monotone subhomogeneous mapping},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {222--231},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a20/}
}
                      
                      
                    TY - JOUR AU - Vl. D. Mazurov AU - A. I. Smirnov TI - The structure of the fixed point set of a reducible monotone subhomogeneous mapping JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 222 EP - 231 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a20/ LA - ru ID - TIMM_2017_23_4_a20 ER -
%0 Journal Article %A Vl. D. Mazurov %A A. I. Smirnov %T The structure of the fixed point set of a reducible monotone subhomogeneous mapping %J Trudy Instituta matematiki i mehaniki %D 2017 %P 222-231 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a20/ %G ru %F TIMM_2017_23_4_a20
Vl. D. Mazurov; A. I. Smirnov. The structure of the fixed point set of a reducible monotone subhomogeneous mapping. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 222-231. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a20/
