Classification of links of small complexity in a thickened torus
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 18-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper contains the table of links in the thickened torus $T^2\times I$ admitting diagrams with at most four crossings. The links are constructed by a three-step process. First we enumerate all abstract regular graphs of degree 4 with at most four vertices. Then we consider all nonequivalent embeddings of these graphs into $T^2$. After that each vertex of each of the obtained graphs is replaced by a crossing of one of the two possible types, when a segment of the graph lies lower or above another segment. The words “above” and “lower” are understood in the sense of the coordinate of the corresponding point in the interval $I$. As a result, we obtain a family of diagrams of knots and links in $T^2 \times I$. We propose a number of artificial tricks that essentially reduce the enumeration and offer a rigorous proof of the completeness of the table. A generalized version of the Kauffman polynomial is used to prove that all the links are different.
Keywords: link, thickened torus, link table.
@article{TIMM_2017_23_4_a2,
     author = {A. A. Akimova and S. V. Matveev and V. V. Tarkaev},
     title = {Classification of links of small complexity in a thickened torus},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {18--31},
     year = {2017},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a2/}
}
TY  - JOUR
AU  - A. A. Akimova
AU  - S. V. Matveev
AU  - V. V. Tarkaev
TI  - Classification of links of small complexity in a thickened torus
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 18
EP  - 31
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a2/
LA  - ru
ID  - TIMM_2017_23_4_a2
ER  - 
%0 Journal Article
%A A. A. Akimova
%A S. V. Matveev
%A V. V. Tarkaev
%T Classification of links of small complexity in a thickened torus
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 18-31
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a2/
%G ru
%F TIMM_2017_23_4_a2
A. A. Akimova; S. V. Matveev; V. V. Tarkaev. Classification of links of small complexity in a thickened torus. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 18-31. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a2/

[1] Drobotukhina Yu. V., “Analog mnogochlena Dzhounsa dlya zatseplenii v $RP^3$ i obobschenie teoremy Kauffmana-Murasugi”, Algebra i analiz, 2:3 (1990), 171–191 | MR | Zbl

[2] Miyazaki Katura, “Conjugation and prime decomposition of knots in closed, oriented $3$-manifolds”, Trans. Amer. Math. Soc., 313:2 (1989), 785–804 | MR | Zbl

[3] Gabrovsek Bostjan, “Tabulation of prime knots in lens spaes”, Mediterr. J. Math., 14:2 (2017), Art. 88, 24 pp. | DOI | MR

[4] Costantino F., “Colored Jones invariants of links in $\#_k S^2\times S^1$ and the Volume Conjecture”, J. Lond. Math. Soc. (2), 76:2 (2007), 1–15 | DOI | MR | Zbl

[5] Kuperberg G., “What is a virtual link?”, Algebr. Geom. Topol., 3 (2003), 587–591 | DOI | MR | Zbl

[6] Matveev S.V., “Razlozhenie gomologicheski trivialnykh uzlov v $F\times I$”, Dokl. AN, 433:1 (2010), 13–15 | Zbl

[7] Turaev V., “Cobordism of knots on surfaces”, J. Topol., 1:2 (2008), 285–305 | DOI | MR | Zbl

[8] Adams Colin, Fleming Thomas, Levin Michael, Turner Ari M., “Crossing number of alternating knots in $S \times I$”, Pacific J. Math., 203:1 (2002), 1–22 | DOI | MR | Zbl

[9] Kauffman L.H., “State models and the Jones polynomial”, Topology, 26:3 (1987), 395–407 | DOI | MR | Zbl

[10] Dye H. A., Kauffman, Louis H., “Minimal surface representations of virtual knots and links”, Algebr. Geom. Topol., 5 (2005), 509–535 | DOI | MR | Zbl

[11] Akimova A.A., Matveev S.V., “Classification of genus 1 virtual knots having at most five classical crossings”, J. Knot Theory Ramifications, 23:6 (2014), 1450031, 19 pp. | DOI | MR | Zbl

[12] Akimova A.A., Matveev S.V., “Klassifikatsiya uzlov maloi slozhnosti v utolschennom tore”, Vestn. NGU. Ser. “Matematika. Mekhanika. Informatika”, 12:3 (2012), 10–21 | Zbl

[13] Akimova A.A., “Klassifikatsiya uzlov v utolschennom tore, minimalnye diagrammy kotorykh ne lezhat v koltse i imeyut pyat perekrestkov”, Vestn. YuUrGU. Ser. “Matematika. Mekhanika. Fizika”, 5:1 (2013), 8–11 | MR | Zbl

[14] Akimova A.A., “Klassifikatsiya uzlov v utolschennom tore, minimalnye oktaedralnye diagrammy kotorykh ne lezhat v koltse”, Vestn. YuUrGU. Ser. “Matematika. Mekhanika. Fizika”, 7:1 (2015), 5–10 | Zbl

[15] Matveev S.V., “Prime decompositions of knots in $T\times I$”, Topol. Appl., 159:7 (2011), 1820–1824 | DOI | MR

[16] Korablev Ph., Matveev S.V., “Reductions of knots in thickened surfaces and virtual knots”, Dokl. Math., 83:2 (2011), 262–264 | DOI | MR | Zbl

[17] SnapPy 2.5.4 documentation [e-recource] URL: http://www.math.uic.edu/t3m/SnapPy

[18] Burton B., “The pachner graph and the simplification of 3-sphere triangulations”, Proc. of the Twenty-seventh annual symposium on computational geometry (SCG'11), ACM, New York, 2011, 153–162 | MR | Zbl

[19] Laboratory of Quantum Topology of Chelyabinsk State University, Atlas of 3-Manifolds [site] URL: http://www.matlas.math.csu.ru