@article{TIMM_2017_23_4_a2,
author = {A. A. Akimova and S. V. Matveev and V. V. Tarkaev},
title = {Classification of links of small complexity in a thickened torus},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {18--31},
year = {2017},
volume = {23},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a2/}
}
TY - JOUR AU - A. A. Akimova AU - S. V. Matveev AU - V. V. Tarkaev TI - Classification of links of small complexity in a thickened torus JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 18 EP - 31 VL - 23 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a2/ LA - ru ID - TIMM_2017_23_4_a2 ER -
A. A. Akimova; S. V. Matveev; V. V. Tarkaev. Classification of links of small complexity in a thickened torus. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 18-31. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a2/
[1] Drobotukhina Yu. V., “Analog mnogochlena Dzhounsa dlya zatseplenii v $RP^3$ i obobschenie teoremy Kauffmana-Murasugi”, Algebra i analiz, 2:3 (1990), 171–191 | MR | Zbl
[2] Miyazaki Katura, “Conjugation and prime decomposition of knots in closed, oriented $3$-manifolds”, Trans. Amer. Math. Soc., 313:2 (1989), 785–804 | MR | Zbl
[3] Gabrovsek Bostjan, “Tabulation of prime knots in lens spaes”, Mediterr. J. Math., 14:2 (2017), Art. 88, 24 pp. | DOI | MR
[4] Costantino F., “Colored Jones invariants of links in $\#_k S^2\times S^1$ and the Volume Conjecture”, J. Lond. Math. Soc. (2), 76:2 (2007), 1–15 | DOI | MR | Zbl
[5] Kuperberg G., “What is a virtual link?”, Algebr. Geom. Topol., 3 (2003), 587–591 | DOI | MR | Zbl
[6] Matveev S.V., “Razlozhenie gomologicheski trivialnykh uzlov v $F\times I$”, Dokl. AN, 433:1 (2010), 13–15 | Zbl
[7] Turaev V., “Cobordism of knots on surfaces”, J. Topol., 1:2 (2008), 285–305 | DOI | MR | Zbl
[8] Adams Colin, Fleming Thomas, Levin Michael, Turner Ari M., “Crossing number of alternating knots in $S \times I$”, Pacific J. Math., 203:1 (2002), 1–22 | DOI | MR | Zbl
[9] Kauffman L.H., “State models and the Jones polynomial”, Topology, 26:3 (1987), 395–407 | DOI | MR | Zbl
[10] Dye H. A., Kauffman, Louis H., “Minimal surface representations of virtual knots and links”, Algebr. Geom. Topol., 5 (2005), 509–535 | DOI | MR | Zbl
[11] Akimova A.A., Matveev S.V., “Classification of genus 1 virtual knots having at most five classical crossings”, J. Knot Theory Ramifications, 23:6 (2014), 1450031, 19 pp. | DOI | MR | Zbl
[12] Akimova A.A., Matveev S.V., “Klassifikatsiya uzlov maloi slozhnosti v utolschennom tore”, Vestn. NGU. Ser. “Matematika. Mekhanika. Informatika”, 12:3 (2012), 10–21 | Zbl
[13] Akimova A.A., “Klassifikatsiya uzlov v utolschennom tore, minimalnye diagrammy kotorykh ne lezhat v koltse i imeyut pyat perekrestkov”, Vestn. YuUrGU. Ser. “Matematika. Mekhanika. Fizika”, 5:1 (2013), 8–11 | MR | Zbl
[14] Akimova A.A., “Klassifikatsiya uzlov v utolschennom tore, minimalnye oktaedralnye diagrammy kotorykh ne lezhat v koltse”, Vestn. YuUrGU. Ser. “Matematika. Mekhanika. Fizika”, 7:1 (2015), 5–10 | Zbl
[15] Matveev S.V., “Prime decompositions of knots in $T\times I$”, Topol. Appl., 159:7 (2011), 1820–1824 | DOI | MR
[16] Korablev Ph., Matveev S.V., “Reductions of knots in thickened surfaces and virtual knots”, Dokl. Math., 83:2 (2011), 262–264 | DOI | MR | Zbl
[17] SnapPy 2.5.4 documentation [e-recource] URL: http://www.math.uic.edu/t3m/SnapPy
[18] Burton B., “The pachner graph and the simplification of 3-sphere triangulations”, Proc. of the Twenty-seventh annual symposium on computational geometry (SCG'11), ACM, New York, 2011, 153–162 | MR | Zbl
[19] Laboratory of Quantum Topology of Chelyabinsk State University, Atlas of 3-Manifolds [site] URL: http://www.matlas.math.csu.ru