Symmetrical $2$-extensions of the $2$-dimensional grid. II
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 192-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The investigation of symmetrical $q$-extensions of a $d$-dimensional cubic grid $\Lambda^{d}$ is of interest both for group theory and for graph theory. For small $d\geq 1$ and $q>1$ (especially for $q=2$), symmetrical $q$-extensions of $\Lambda^{d}$ are of interest for molecular crystallography and some phisycal theories. Earlier V. Trofimov proved that there are only finitely many symmetrical $2$-extensions of $\Lambda^{d}$ for any positive integer $d$. This paper is the second and concluding part of our work devoted to the description of all, up to equivalence, realizations of symmetrical $2$-extensions of $\Lambda^{2}$ (we show that there are $162$ such realizations). In the first part of our work, which was published earlier, we found all, up to equivalence, realizations of symmetrical $2$-extensions of $\Lambda^{2}$ such that only the trivial automorphism fixes all blocks of the imprimitivity system ($87$ realizations). In the present paper, we find the remaining realizations of symmetrical $2$-extensions of $\Lambda^{2}$.
Keywords: symmetrical extension of a graph, $d$-dimensional grid.
@article{TIMM_2017_23_4_a18,
     author = {E. A. Konoval'chik and K. V. Kostousov},
     title = {Symmetrical $2$-extensions of the $2$-dimensional grid. {II}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {192--211},
     year = {2017},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a18/}
}
TY  - JOUR
AU  - E. A. Konoval'chik
AU  - K. V. Kostousov
TI  - Symmetrical $2$-extensions of the $2$-dimensional grid. II
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 192
EP  - 211
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a18/
LA  - ru
ID  - TIMM_2017_23_4_a18
ER  - 
%0 Journal Article
%A E. A. Konoval'chik
%A K. V. Kostousov
%T Symmetrical $2$-extensions of the $2$-dimensional grid. II
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 192-211
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a18/
%G ru
%F TIMM_2017_23_4_a18
E. A. Konoval'chik; K. V. Kostousov. Symmetrical $2$-extensions of the $2$-dimensional grid. II. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 192-211. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a18/

[1] Trofimov V.I., “Symmetrical extensions of graphs and some other topics in graph theory related with group theory”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:4 (2011), 316–320 | MR

[2] Neganova E.A., Trofimov V.I., “Simmetricheskie rasshireniya grafov”, Izv. RAN. Cer. matematicheskaya, 78:4 (2014), 175–206 | DOI | MR | Zbl

[3] Trofimov V.I., “Konechnost chisla simmetricheskikh 2-rasshirenii $d$-mernoi reshetki i skhodnykh s nei grafov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:3 (2013), 290–303

[4] Trofimov V.I., “Neskolko zamechanii o simmetricheskikh rasshireniyakh grafov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:2 (2014), 284–293

[5] Konovalchik E.A., Kostousov K.V., “Simmetricheskie 2-rasshireniya 2-mernoi reshetki. I”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:1 (2016), 159–179 | MR

[6] GAP - Groups, Algorithms, Programming - a System for Computational Discrete Algebra, Ver. 4.5.7: [e-resource], 2012 URL: http://www.gap-system.org

[7] Bettina Eick, Franz Gahler, Werner Nickel, GAP package Cryst - Computing with crystallographic groupsCryst, Ver. 4.1: [e-resource], 2013 URL: https://www.gap-system.org/Packages/cryst.html

[8] Bettina Eick, Max Horn, Werner Nickel, GAP package Polycyclic, Ver. 2.11: [e-resource], 2013 URL: https://www.gap-system.org/Packages/polycyclic.html