@article{TIMM_2017_23_4_a14,
author = {A. O. Ivanov and N. K. Nikolaeva and A. A. Tuzhilin},
title = {Steiner's problem in the {Gromov{\textendash}Hausdorff} space: the case of finite metric spaces},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {152--161},
year = {2017},
volume = {23},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a14/}
}
TY - JOUR AU - A. O. Ivanov AU - N. K. Nikolaeva AU - A. A. Tuzhilin TI - Steiner's problem in the Gromov–Hausdorff space: the case of finite metric spaces JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 152 EP - 161 VL - 23 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a14/ LA - ru ID - TIMM_2017_23_4_a14 ER -
%0 Journal Article %A A. O. Ivanov %A N. K. Nikolaeva %A A. A. Tuzhilin %T Steiner's problem in the Gromov–Hausdorff space: the case of finite metric spaces %J Trudy Instituta matematiki i mehaniki %D 2017 %P 152-161 %V 23 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a14/ %G ru %F TIMM_2017_23_4_a14
A. O. Ivanov; N. K. Nikolaeva; A. A. Tuzhilin. Steiner's problem in the Gromov–Hausdorff space: the case of finite metric spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 152-161. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a14/
[1] Memoli F., “On the use of Gromov-Hausdorff distances for shape comparison”, Proc. Eurographics Symposium on Point Based Graphics 2007, eds. eds. M. Botsch, R. Pajarola, B. Chen, and M. Zwicker, Prague, 2007, 81–90 | DOI
[2] Hausdorff F., Grundzuge der Mengenlehre, [reprinted by Chelsea in 1949], Veit and Company, Leipzig, 1914, 476 pp. | MR
[3] Edwards D., “The structure of superspace”, Studies in Topology, Proc. Conf., dedicated to Math. Sect. Polish Acad. Sci. (Univ. North Carolina, Charlotte, N. C., 1974), eds. eds. N.M. Stavrakas, K.R. Allen, Academic Press, Inc., N. Y.; London; San Francisco, 1975, 121–133 | DOI | MR
[4] Gromov M., “Groups of polynomial growth and expanding maps”, Publications Mathematiques I.H.E.S., 53:1 (1981), 53–78 | DOI | MR | Zbl
[5] Burago D.Yu., Burago Yu.D., Ivanov S.V., Kurs metricheskoi geometrii, Izd-vo In-ta kompyuternykh issledovanii, M.; Izhevsk, 2004, 512 pp.
[6] Ivanov A.O., Nikolaeva N.K., Tuzhilin A.A., “Metrika Gromova - Khausdorfa na prostranstve metricheskikh kompaktov - strogo vnutrennyaya”, Mat. zametki, 100:6 (2016), 947–950 | DOI | MR | Zbl
[7] Ivanov A.O., Tuzhilin A.A., Teoriya ekstremalnykh setei, Izd-vo In-ta kompyuternykh issledovanii, M., Izhevsk, 2003, 424 pp.
[8] Garkavi A.L., Shmatkov V.A., “O tochke Lame i ee obobscheniyakh v normirovannom prostranstve”, Mat. sb., 95:2 (1974), 272–293 | MR | Zbl
[9] Borodin P.A., “Primer nesuschestvovaniya tochki Shteinera v banakhovom prostranstve”, Mat. zametki, 87:4 (2010), 514–518 | DOI | Zbl
[10] Bednov B.B., Strelkova N.P., “O suschestvovanii kratchaishikh setei v banakhovykh prostranstvakh”, Mat. zametki, 94:1 (2013), 46–54 | DOI | MR | Zbl
[11] Ivanov A., Nikolaeva N., Tuzhilin A., Steiner problem in Gromov-Hausdorff space: the Case of finite metric spaces, [e-resource], 2016, 5 pp., arXiv: https://arxiv.org/pdf/1604.02170.pdf
[12] Ivanov A. O., Tuzhilin A. A., “Minimal networks: A review”, Advances in Dynamical Systems and Control, Studies in Systems, Decision and Control, 69, eds. eds. V.A. Sadovnochiy, M.Z. Zgurovsky, Springer Switzerland, Cham, 2016, 43–80 | DOI | MR | Zbl
[13] Ivanov A., Iliadis S., Tuzhilin A., “Realizations of Gromov-Hausdorff distance”, [e-source], 2016, 6 pp., arXiv: https://arxiv.org/pdf/1603.08850.pdf | MR
[14] Chowdhury S., Memoli F., “Constructing geodesics on the space of compact metric spaces”, [e-source], 2016, 5 pp., arXiv: https://arxiv.org/pdf/1603.02385.pdf
[15] Ivanov A.O., Tuzhilin A.A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Mat. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl
[16] Bednov B.B., Borodin P.A., “Banakhovy prostranstva, realizuyuschie minimalnye zapolneniya”, Mat. sb., 205:4 (2014), 3–20 | DOI | MR | Zbl
[17] A.O. Ivanov, A.A. Tuzhilin, A.Yu. Eremin, E.S. Erokhovets, A.S. Pakhomova, O.V. Rubleva, N.P. Strelkova, E.I. Filonenko, “Minimalnye zapolneniya psevdometricheskikh prostranstv”, Tr. seminara po vektornomu i tenzornomu analizu s ikh prilozheniyami k geometrii, mekhanike i fizike, v. 27, 2011, 83–105
[18] Ivanov A., Tuzhilin A., “Gromov - Hausdorff distance, irreducible correspondences, Steiner problem, and minimal fillings”, [e-resource], 2016, 11 pp., arXiv: https://arxiv.org/pdf/1604.06116.pdf