Steiner's problem in the Gromov–Hausdorff space: the case of finite metric spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 152-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study Steiner's problem in the Gromov–Hausdorff space, i.e., in the space of compact metric spaces (considered up to isometry) endowed with the Gromov-Hausdorff distance. Since this space is not boundedly compact, the problem of the existence of a shortest network connecting a finite point set in this space is open. We prove that each finite family of finite metric spaces can be connected by a shortest network. Moreover, it turns out that there exists a shortest tree all of whose vertices are finite metric spaces. A bound for the number of points in such metric spaces is derived. As an example, the case of three-point metric spaces is considered. We also prove that the Gromov-Hausdorff space does not realise minimal fillings, i.e., shortest trees in it need not be minimal fillings of their boundaries.
Keywords: Steiner's problem, shortest network, Steiner's minimal tree, minimal filling, Gromov-Hausdorff space, Gromov–Hausdorff distance.
@article{TIMM_2017_23_4_a14,
     author = {A. O. Ivanov and N. K. Nikolaeva and A. A. Tuzhilin},
     title = {Steiner's problem in the {Gromov{\textendash}Hausdorff} space: the case of finite metric spaces},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {152--161},
     year = {2017},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a14/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - N. K. Nikolaeva
AU  - A. A. Tuzhilin
TI  - Steiner's problem in the Gromov–Hausdorff space: the case of finite metric spaces
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 152
EP  - 161
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a14/
LA  - ru
ID  - TIMM_2017_23_4_a14
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A N. K. Nikolaeva
%A A. A. Tuzhilin
%T Steiner's problem in the Gromov–Hausdorff space: the case of finite metric spaces
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 152-161
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a14/
%G ru
%F TIMM_2017_23_4_a14
A. O. Ivanov; N. K. Nikolaeva; A. A. Tuzhilin. Steiner's problem in the Gromov–Hausdorff space: the case of finite metric spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 152-161. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a14/

[1] Memoli F., “On the use of Gromov-Hausdorff distances for shape comparison”, Proc. Eurographics Symposium on Point Based Graphics 2007, eds. eds. M. Botsch, R. Pajarola, B. Chen, and M. Zwicker, Prague, 2007, 81–90 | DOI

[2] Hausdorff F., Grundzuge der Mengenlehre, [reprinted by Chelsea in 1949], Veit and Company, Leipzig, 1914, 476 pp. | MR

[3] Edwards D., “The structure of superspace”, Studies in Topology, Proc. Conf., dedicated to Math. Sect. Polish Acad. Sci. (Univ. North Carolina, Charlotte, N. C., 1974), eds. eds. N.M. Stavrakas, K.R. Allen, Academic Press, Inc., N. Y.; London; San Francisco, 1975, 121–133 | DOI | MR

[4] Gromov M., “Groups of polynomial growth and expanding maps”, Publications Mathematiques I.H.E.S., 53:1 (1981), 53–78 | DOI | MR | Zbl

[5] Burago D.Yu., Burago Yu.D., Ivanov S.V., Kurs metricheskoi geometrii, Izd-vo In-ta kompyuternykh issledovanii, M.; Izhevsk, 2004, 512 pp.

[6] Ivanov A.O., Nikolaeva N.K., Tuzhilin A.A., “Metrika Gromova - Khausdorfa na prostranstve metricheskikh kompaktov - strogo vnutrennyaya”, Mat. zametki, 100:6 (2016), 947–950 | DOI | MR | Zbl

[7] Ivanov A.O., Tuzhilin A.A., Teoriya ekstremalnykh setei, Izd-vo In-ta kompyuternykh issledovanii, M., Izhevsk, 2003, 424 pp.

[8] Garkavi A.L., Shmatkov V.A., “O tochke Lame i ee obobscheniyakh v normirovannom prostranstve”, Mat. sb., 95:2 (1974), 272–293 | MR | Zbl

[9] Borodin P.A., “Primer nesuschestvovaniya tochki Shteinera v banakhovom prostranstve”, Mat. zametki, 87:4 (2010), 514–518 | DOI | Zbl

[10] Bednov B.B., Strelkova N.P., “O suschestvovanii kratchaishikh setei v banakhovykh prostranstvakh”, Mat. zametki, 94:1 (2013), 46–54 | DOI | MR | Zbl

[11] Ivanov A., Nikolaeva N., Tuzhilin A., Steiner problem in Gromov-Hausdorff space: the Case of finite metric spaces, [e-resource], 2016, 5 pp., arXiv: https://arxiv.org/pdf/1604.02170.pdf

[12] Ivanov A. O., Tuzhilin A. A., “Minimal networks: A review”, Advances in Dynamical Systems and Control, Studies in Systems, Decision and Control, 69, eds. eds. V.A. Sadovnochiy, M.Z. Zgurovsky, Springer Switzerland, Cham, 2016, 43–80 | DOI | MR | Zbl

[13] Ivanov A., Iliadis S., Tuzhilin A., “Realizations of Gromov-Hausdorff distance”, [e-source], 2016, 6 pp., arXiv: https://arxiv.org/pdf/1603.08850.pdf | MR

[14] Chowdhury S., Memoli F., “Constructing geodesics on the space of compact metric spaces”, [e-source], 2016, 5 pp., arXiv: https://arxiv.org/pdf/1603.02385.pdf

[15] Ivanov A.O., Tuzhilin A.A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Mat. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl

[16] Bednov B.B., Borodin P.A., “Banakhovy prostranstva, realizuyuschie minimalnye zapolneniya”, Mat. sb., 205:4 (2014), 3–20 | DOI | MR | Zbl

[17] A.O. Ivanov, A.A. Tuzhilin, A.Yu. Eremin, E.S. Erokhovets, A.S. Pakhomova, O.V. Rubleva, N.P. Strelkova, E.I. Filonenko, “Minimalnye zapolneniya psevdometricheskikh prostranstv”, Tr. seminara po vektornomu i tenzornomu analizu s ikh prilozheniyami k geometrii, mekhanike i fizike, v. 27, 2011, 83–105

[18] Ivanov A., Tuzhilin A., “Gromov - Hausdorff distance, irreducible correspondences, Steiner problem, and minimal fillings”, [e-resource], 2016, 11 pp., arXiv: https://arxiv.org/pdf/1604.06116.pdf