Steiner's problem in the Gromov--Hausdorff space: the case of finite metric spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 152-161

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Steiner's problem in the Gromov–Hausdorff space, i.e., in the space of compact metric spaces (considered up to isometry) endowed with the Gromov-Hausdorff distance. Since this space is not boundedly compact, the problem of the existence of a shortest network connecting a finite point set in this space is open. We prove that each finite family of finite metric spaces can be connected by a shortest network. Moreover, it turns out that there exists a shortest tree all of whose vertices are finite metric spaces. A bound for the number of points in such metric spaces is derived. As an example, the case of three-point metric spaces is considered. We also prove that the Gromov-Hausdorff space does not realise minimal fillings, i.e., shortest trees in it need not be minimal fillings of their boundaries.
Keywords: Steiner's problem, shortest network, Steiner's minimal tree, minimal filling, Gromov-Hausdorff space, Gromov–Hausdorff distance.
@article{TIMM_2017_23_4_a14,
     author = {A. O. Ivanov and N. K. Nikolaeva and A. A. Tuzhilin},
     title = {Steiner's problem in the {Gromov--Hausdorff} space: the case of finite metric spaces},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {152--161},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a14/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - N. K. Nikolaeva
AU  - A. A. Tuzhilin
TI  - Steiner's problem in the Gromov--Hausdorff space: the case of finite metric spaces
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 152
EP  - 161
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a14/
LA  - ru
ID  - TIMM_2017_23_4_a14
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A N. K. Nikolaeva
%A A. A. Tuzhilin
%T Steiner's problem in the Gromov--Hausdorff space: the case of finite metric spaces
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 152-161
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a14/
%G ru
%F TIMM_2017_23_4_a14
A. O. Ivanov; N. K. Nikolaeva; A. A. Tuzhilin. Steiner's problem in the Gromov--Hausdorff space: the case of finite metric spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 152-161. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a14/