Automorphisms of an $AT4(4,4,2)$-graph and of the corresponding strongly regular graphs
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 119-127
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A.A. Makhnev, D.V. Paduchikh, and M. M. Khamgokova gave a classification of distance-regular locally\linebreak $GQ(5,3)$-graphs. In particular, there arises an $AT4(4,4,2)$-graph with intersection array $\{96,75,16,1;1,16,75,96\}$ on $644$ vertices. The same authors proved that an $AT4(4,4,2)$-graph is not a locally $GQ(5,3)$-graph. However, the existence of an $AT4(4,4,2)$-graph that is a locally pseudo $GQ(5,3)$-graph is unknown. The antipodal quotient of an $AT4(4,4,2)$-graph is a strongly regular graph with parameters $(322,96,20,32)$. These two graphs are locally pseudo $GQ(5,3)$-graphs. We find their possible automorphisms. It turns out that the automorphism group of a distance-regular graph with intersection array $\{96,75,16,1;1,16,75,96\}$ acts intransitively on the set of its antipodal classes.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
distance-regular graph
Mots-clés : graph automorphism.
                    
                  
                
                
                Mots-clés : graph automorphism.
@article{TIMM_2017_23_4_a11,
     author = {K. S. Efimov},
     title = {Automorphisms of an $AT4(4,4,2)$-graph and of the corresponding strongly regular graphs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {119--127},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a11/}
}
                      
                      
                    TY - JOUR AU - K. S. Efimov TI - Automorphisms of an $AT4(4,4,2)$-graph and of the corresponding strongly regular graphs JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 119 EP - 127 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a11/ LA - ru ID - TIMM_2017_23_4_a11 ER -
K. S. Efimov. Automorphisms of an $AT4(4,4,2)$-graph and of the corresponding strongly regular graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 119-127. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a11/
