Automorphisms of an $AT4(4,4,2)$-graph and of the corresponding strongly regular graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 119-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A.A. Makhnev, D.V. Paduchikh, and M. M. Khamgokova gave a classification of distance-regular locally\linebreak $GQ(5,3)$-graphs. In particular, there arises an $AT4(4,4,2)$-graph with intersection array $\{96,75,16,1;1,16,75,96\}$ on $644$ vertices. The same authors proved that an $AT4(4,4,2)$-graph is not a locally $GQ(5,3)$-graph. However, the existence of an $AT4(4,4,2)$-graph that is a locally pseudo $GQ(5,3)$-graph is unknown. The antipodal quotient of an $AT4(4,4,2)$-graph is a strongly regular graph with parameters $(322,96,20,32)$. These two graphs are locally pseudo $GQ(5,3)$-graphs. We find their possible automorphisms. It turns out that the automorphism group of a distance-regular graph with intersection array $\{96,75,16,1;1,16,75,96\}$ acts intransitively on the set of its antipodal classes.
Keywords: distance-regular graph
Mots-clés : graph automorphism.
@article{TIMM_2017_23_4_a11,
     author = {K. S. Efimov},
     title = {Automorphisms of an $AT4(4,4,2)$-graph and of the corresponding strongly regular graphs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {119--127},
     year = {2017},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a11/}
}
TY  - JOUR
AU  - K. S. Efimov
TI  - Automorphisms of an $AT4(4,4,2)$-graph and of the corresponding strongly regular graphs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 119
EP  - 127
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a11/
LA  - ru
ID  - TIMM_2017_23_4_a11
ER  - 
%0 Journal Article
%A K. S. Efimov
%T Automorphisms of an $AT4(4,4,2)$-graph and of the corresponding strongly regular graphs
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 119-127
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a11/
%G ru
%F TIMM_2017_23_4_a11
K. S. Efimov. Automorphisms of an $AT4(4,4,2)$-graph and of the corresponding strongly regular graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 119-127. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a11/

[1] Makhnev A.A., Paduchikh D.V., Khamgokova M.M., “O vpolne regulyarnykh lokalno $GQ(5,3)$-grafakh”, Dokl. AN, 435:6 (2010), 744–747 | Zbl

[2] Jurisic A., Koolen J., “Classification of the family $AT4(qs,q,q)$ of antipodal tight graphs”, J. Comb. Theory, 118:3 (2011), 842–852 | DOI | MR | Zbl

[3] Makhnev A.A., Paduchikh D.V., Khamgokova M.M., “O lokalno $GQ(5,3)$-grafakh”, Tez. dokl. Mezhdunarodnoi konf. “Algebra i kombinatorika”, posvyaschen. 60-letiyu A.A. Makhneva, Ekaterinburg, 2013, 64–66

[4] Brouwer A.E., Haemers W.H., “Graph Spectrum”, Spectra of Graphs, Springer, NY, 2012, 1–20 | DOI | MR

[5] Brouwer A.E., Cohen A.M., Neumaier A., “Distance-Regular Graphs”, Part of the Ergebnisse der Mathematik und ihrer Grenzgebiete book series, MATHE3, 18, Springer, Berlin, 1989, 391–412 | DOI | MR

[6] Gavrilyuk A.L., Makhnev A.A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{56,45,1;1,9,56\}$”, Dokl. AN, 432:5 (2010), 512–515 | MR

[7] MacKay M., Siran J., “Search for properties of the missing Moore graph”, Linear Algebra and its Applications, 432 (2010), 2381–2398 | DOI | MR

[8] Behbahani M., Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math, 311:2–3 (2011), 132–144 | DOI | MR | Zbl

[9] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Siberian Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl