Discrete operator Riccati equation in an optimal stabilization problem for a periodic linear system with aftereffect
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 105-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An optimal stabilization problem for linear periodic systems of differential equations with aftereffect is described in a function space. A procedure that narrows the class of admissible controls is used. Admissible feedback controls are formed in the function state space. We assume a piecewise constant periodic dependence of the controls on time. The breakpoints are independent of the choice of the states. An equivalent discrete problem of optimal stabilization in a function space is constructed. The solution of the nonautonomous discrete operator Riccati equation determines an optimal stabilizing control. The discrete stabilization problem is autonomous if the sequence of breakpoints of the controls is periodic. A representation of solutions of the autonomous discrete operator Riccati equation is found. A system of integral equations is obtained for the coefficients of this representation. A formula for the optimal stabilizing control in the discrete problem is derived.
Keywords: periodic linear system with aftereffect, optimal stabilization, discrete operator Riccati equation.
@article{TIMM_2017_23_4_a10,
     author = {Yu. F. Dolgii and R. I. Shevchenko},
     title = {Discrete operator {Riccati} equation in an optimal stabilization problem for a periodic linear system with aftereffect},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {105--118},
     year = {2017},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a10/}
}
TY  - JOUR
AU  - Yu. F. Dolgii
AU  - R. I. Shevchenko
TI  - Discrete operator Riccati equation in an optimal stabilization problem for a periodic linear system with aftereffect
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 105
EP  - 118
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a10/
LA  - ru
ID  - TIMM_2017_23_4_a10
ER  - 
%0 Journal Article
%A Yu. F. Dolgii
%A R. I. Shevchenko
%T Discrete operator Riccati equation in an optimal stabilization problem for a periodic linear system with aftereffect
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 105-118
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a10/
%G ru
%F TIMM_2017_23_4_a10
Yu. F. Dolgii; R. I. Shevchenko. Discrete operator Riccati equation in an optimal stabilization problem for a periodic linear system with aftereffect. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 105-118. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a10/

[1] Krasovskii N.N., “Ob analiticheskom konstruirovanii optimalnogo regulyatora v sisteme s zapazdyvaniyami vremeni”, Prikl. matematika i mekhanika, 26:1 (1962), 39–51

[2] Krasovskii N.N., “Ob optimalnom regulirovanii v lineinykh sistemakh s zapazdyvaniem vremeni”, Sib. mat. zhurn., 4:2 (1963), 295–302

[3] Yanushevskii R.T., Upravlenie ob'ektami s zapazdyvaniem, Nauka, M., 1978, 410 pp. | MR

[4] Delfour M.C., McCalla C., Mitter S.K., “Stability and the infinite-time quadratic cost problem for linear hereditary differential systems”, SIAM J. Control, 13:1 (1975), 48–88 | DOI | MR | Zbl

[5] Kushner H.J, Barnea D.I., “On the control of a linear functional-differential equation with qvadratic cost”, SIAM J. Control, 8:2 (1970), 257–272 | DOI | MR | Zbl

[6] Gibson J.S., “Linear-quadratic optimal control of hereditary differential systems: infinite dimensional Riccati equations and numerical approximations”, SIAM J. Control Optimiz., 21:5 (1983), 95–135 | DOI | MR

[7] Egorov A.I., Uravneniya Rikkati, SOLON-Press, M., 2017, 447 pp.

[8] Dolgii Yu.F., “Tochnye resheniya zadachi optimalnoi stabilizatsii dlya sistem differentsialnykh uravnenii s posledeistviem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:4 (2015), 124–135 | MR

[9] Krasovskii N.N., “Ob approksimatsii odnoi zadachi analiticheskogo konstruirovaniya regulyatorov v sisteme s zapazdyvaniem”, Prikl. matematika i mekhanika, 28:4 (1964), 716–724 | Zbl

[10] Osipov Yu.S., “O stabilizatsii upravlyaemykh sistem s zapazdyvaniem”, Differents. uravneniya, 1:5 (1965), 605–618 | Zbl

[11] Bykov D.S., Dolgii Yu.F., “Otsenka tochnosti approksimatsii optimalnogo stabiliziruyuschego upravleniya sistemy s zapazdyvaniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:2 (2012), 38–47 | MR

[12] Krasovskii N.N., Osipov Yu.S., “O stabilizatsii dvizhenii upravlyaemogo ob'ekta s zapazdyvaniem v sisteme regulirovaniya”, Izv. AN SSSR. Tekhn. kibernetika, 1963, no. 6, 3–15 | Zbl

[13] Dolgii Yu.F., Koshkin E.V., “Ispolzovanie konechnomernykh approksimatsii v zadache stabilizatsii periodicheskikh sistem s posledeistviem”, Izv. vuzov. Matematika, 2015, no. 1, 29–45 | Zbl

[14] Kvakernaak Kh., Sivan R., Lineinye optimalnye sistemy upravleniya, Mir, M., 1977, 656 pp.

[15] Fomin V.N., Metody upravleniya lineinymi diskretnymi ob'ektami, Izd-vo Leningradskogo universiteta, Leningrad, 1985, 336 pp.

[16] Dolgii Yu.F., “Kharakteristicheskoe uravnenie v zadache asimptoticheskoi ustoichivosti periodicheskoi sistemy s posledeistviem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11:1 (2005), 85–96 | MR