The volume of a hyperbolic tetrahedron with symmetry group $S_4$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 7-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of calculating the volume of a hyperbolic tetrahedron of general form was solved in a number of works by G. Sforza and other authors. The formulas obtained are rather cumbersome. It is known that if a polyhedron has nontrivial symmetry, then the volume formula is essentially simplified. This phenomenon was discovered by Lobachevsky, who found the volume of an ideal tetrahedron. Later, J. Milnor expressed the corresponding volume as the sum of three Lobachevsky functions. In this paper we consider compact hyperbolic tetrahedra having the symmetry group $S_4$, which is generated by a mirror-rotational symmetry of the fourth order. The latter symmetry is the composition of rotation by the angle of $\pi/2$ about an axis passing through the middles of two opposite edges and reflection with respect to a plane perpendicular to this axis and passing through the middles of the remaining four edges. We establish necessary and sufficient conditions for the existence of such tetrahedra in $\mathbb{H}^3$. Then we find relations between their dihedral angles and edge lengths in the form of a cosine law. Finally, we obtain exact integral formulas expressing the hyperbolic volume of the tetrahedra in terms of the edge lengths.
Keywords: hyperbolic tetrahedron, symmetry group, reflection followed by a rotation, hyperbolic volume.
@article{TIMM_2017_23_4_a1,
     author = {N. V. Abrosimov and B. Vuong Huu},
     title = {The volume of a hyperbolic tetrahedron with symmetry group $S_4$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {7--17},
     year = {2017},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a1/}
}
TY  - JOUR
AU  - N. V. Abrosimov
AU  - B. Vuong Huu
TI  - The volume of a hyperbolic tetrahedron with symmetry group $S_4$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 7
EP  - 17
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a1/
LA  - ru
ID  - TIMM_2017_23_4_a1
ER  - 
%0 Journal Article
%A N. V. Abrosimov
%A B. Vuong Huu
%T The volume of a hyperbolic tetrahedron with symmetry group $S_4$
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 7-17
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a1/
%G ru
%F TIMM_2017_23_4_a1
N. V. Abrosimov; B. Vuong Huu. The volume of a hyperbolic tetrahedron with symmetry group $S_4$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 7-17. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a1/

[1] Matveev S.V., Fomenko A.T., “Izoenergeticheskie poverkhnosti gamiltonovykh sistem, perechislenie trekhmernykh mnogoobrazii v poryadke vozrastaniya ikh slozhnosti i vychislenie ob'emov zamknutykh giperbolicheskikh mnogoobrazii”, Uspekhi mat. nauk, 43:1 (1988), 5–22 | MR | Zbl

[2] Weeks J., Hyperbolic structures on 3-manifolds, Ph. D. Thesis, Princeton University, Princeton, 1985

[3] Thurston W.P., The Geometry and topology of three-manifolds, Lecture Notes, Princeton University, Princeton, 1980, 502 pp.

[4] Gabai D., Meyerhoff R., Milley P., “Minimum volume cusped hyperbolic three-manifolds”, J. Amer. Math. Soc., 22 (2009), 1157–1215 | DOI | MR | Zbl

[5] Milnor J., “Hyperbolic geometry: the first 150 years”, Bull. Amer. Math. Soc., 6:1 (1982), 9–24 | DOI | MR | Zbl

[6] Cho Yu., Kim H., “On the volume formula for hyperbolic tetrahedra”, Disc. Comp. Geom., 22 (1999), 347–366 | DOI | MR | Zbl

[7] Murakami J., Yano M., “On the volume of a hyperbolic and spherical tetrahedron”, Comm. Anal. Geom., 13 (2005), 379–200 | DOI | MR

[8] Ushijima A., “Volume formula for generalized hyperbolic tetrahedra”, Non-Euclidean geometries, Mathematics and Its Applications, 581, eds. eds. A. Prekopa, E. Molnar, 2006, 249–265 | DOI | MR | Zbl

[9] Derevnin D.A., Mednykh A.D., “O formule ob'ema giperbolicheskogo tetraedra”, Uspekhi mat. nauk, 60:2 (2005), 159–160 | DOI | MR | Zbl

[10] Sforza G., “Ricerche di estensionimetria differenziale negli spazi metrico-projettivi”, Modena Mem. Acc. Ser. III, VIII, Appendice (1906), 21–66, (in Italian)

[11] Abrosimov N.V., Mednykh A.D., “Volumes of polytopes in spaces of constant curvature”, Rigidity and Symmetry, Fields Institute Communications, 70, eds. eds. R. Connelly, A. Ivic Weiss , W. Whiteley, Springer, N. Y., 2014, 1–26 | DOI | MR | Zbl

[12] Abrosimov N.V., Kudina E.S., Mednykh A.D., “Ob ob'eme giperbolicheskogo oktaedra, dopuskayuschego 3-simmetriyu”, Tr. MIAN, 288, 2015, 7–15 | DOI | Zbl

[13] Johnson N.W., Geometries and transformations, Cambridge University Press, Cambridge, 2017, 350 pp. | Zbl

[14] Ponarin Ya.P., Elementarnaya geometriya, v 2-kh tomakh, v. 2, Stereometriya, preobrazovaniya prostranstva, MTsNMO, M., 2015, 256 pp.

[15] Vinberg E.B., Geometriya 2. Sovremennye problemy matematiki, VINITI (Itogi nauki i tekhniki), 29, 1988, 268 pp. | Zbl