A variant of the affine-scaling method for a cone programming problem on a second-order cone
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 114-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A linear cone programming problem in which the cone is the direct product of second-order cones (Lorentz cones) is considered. For its solution we propose a direct affine-scaling type method generalizing the corresponding method used in linear programming. The method can be considered as a special way to solve a system of necessary and sufficient optimality conditions for a pair of mutually dual cone programming problems. These conditions are used to derive the dependence of the dual variables on the primal variables, and the dependence is substituted into the complementarity condition. The obtained system of equations is solved with respect to the primal variables by the simple iteration method. The starting points in the method belong to the cone but do not necessarily satisfy the linear equality-type constraints. The local linear convergence of the method is proved under the assumption that the solutions of the primal and dual problems are nondegenerate and strictly complementary.
Keywords: cone programming, second-order cone, affine-scaling method
Mots-clés : local convergence.
@article{TIMM_2017_23_3_a9,
     author = {V. G. Zhadan},
     title = {A variant of the affine-scaling method for a cone programming problem on a second-order cone},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {114--124},
     year = {2017},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a9/}
}
TY  - JOUR
AU  - V. G. Zhadan
TI  - A variant of the affine-scaling method for a cone programming problem on a second-order cone
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 114
EP  - 124
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a9/
LA  - ru
ID  - TIMM_2017_23_3_a9
ER  - 
%0 Journal Article
%A V. G. Zhadan
%T A variant of the affine-scaling method for a cone programming problem on a second-order cone
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 114-124
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a9/
%G ru
%F TIMM_2017_23_3_a9
V. G. Zhadan. A variant of the affine-scaling method for a cone programming problem on a second-order cone. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 114-124. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a9/

[1] Alizadeh F., Goldfarb D., “Second-order cone programming”, Math. Program., Ser. B., 95 (2003), 3–51 | DOI | MR | Zbl

[2] M.S. Lobo, L. Vandenberghe, S. Boyd, H. Lebret, “Applications of second order cone programming”, Linear Algebra Appl., 284 (1998), 193–228 | DOI | MR | Zbl

[3] Handbook on semidefinite, cone and polynomial optimization: theory, algorithms, software and applications, eds. Anjos M.F., Lasserre J.B., eds, Springer, New York, 2011, 960 pp. | DOI | MR

[4] Nesterov Y.E., Todd M.J., “Primal-dual interior-point methods for self-scaled cones”, SIAM J. Optim., 8:2 (1998), 324–364 | DOI | MR | Zbl

[5] Monteiro R.D.C., Tsuchia T., “Polynomial convergence of primal-dual algorithms for the second-order cone program bazed on MZ-family directions”, Math. Program., 88 (2000), 61–83 | DOI | MR | Zbl

[6] Muramatsu M., “A pivoting procedure for a class of second-order cone programming”, Optim. Methods Softw., 21:2 (2006), 295–315 | DOI | MR | Zbl

[7] Evtushenko Yu., Zhadan V., “Stable barrier-projection and barrier-newton methods in linear programming”, Comput. Optimiz. and Appl., 3:4 (1994), 289–304 | DOI | MR

[8] Babynin M.S., Zhadan V.G., “Pryamoi metod vnutrennei tochki dlya lineinoi zadachi poluopredelennogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 48:10 (2008), 1780–1801 | MR | Zbl

[9] Pataki G., “Cone-LP's and semidefinite programs: geometry and simplex-type method”, Proc. Conf. on Integer Programming and Combinatorial Optimization (IPCO5), 1996, 1–13 | MR

[10] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya sistem nelineinykh uravnenii so mnogimi neizvestnymi, Mir, M., 1975, 560 pp. | MR