Mots-clés : maximal antichain, maximal antichain lattice.
@article{TIMM_2017_23_3_a7,
author = {I. A. Derendiaev},
title = {On maximal antichain lattices of finite posets},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {95--104},
year = {2017},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a7/}
}
I. A. Derendiaev. On maximal antichain lattices of finite posets. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 95-104. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a7/
[1] Birkhoff G., “Rings of sets”, Duke Math. J., 3:3 (1937), 443–454 | DOI | MR
[2] Behrendt G., “Maximal antichains in partially ordered sets”, Ars Combin., 1988, no. 25C, 149–157 | MR | Zbl
[3] Reuter K., “The jump number and the lattice of maximal antichains”, Discrete Math., 88:2–3 (1991), 289–307 | DOI | MR | Zbl
[4] Morvan M., Nourine L., “Simplicial elimination schemes, extremal lattices and maximal antichain lattices”, Order, 13:2 (1996), 159–173 | DOI | MR | Zbl
[5] Ganter B., Wille R., Formal concept analysis: Mathematical foundations, Springer-Verlag, Berlin; Heidelberg, 1999, 284 pp. | DOI | MR | Zbl
[6] Garg V., “Maximal antichain lattice algorithms for distributed computations”, Internat. Conf. on Distributed Computing and Networking, Lecture Notes Comp. Sci., 7730, 2013, 240–254 | DOI | MR | Zbl