On maximal antichain lattices of finite posets
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 95-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is devoted to maximal antichain lattices of posets of arbitrary length. Maximal antichain lattices of finite posets of length 1 have been well studied and are applied, for example, in formal concept analysis. However, there are many general properties inherent in finite posets of any length. For an arbitrary element $x$ of some poset, we introduce the notions of smallest and largest maximal antichains containing $x$, which are denoted by $m_x$ and $M_x$, respectively. We prove that the equality $A=\bigvee_{x\in A}m_x=\bigwedge_{x\in A}M_x$ holds for any maximal antichain $A$. This equality allows us to describe all irreducible elements of maximal antichain lattices. The main result of this paper is a description of all finite posets whose maximal antichain lattice is isomorphic to a given lattice. Irreducible elements play a key role in this description.
Keywords: poset
Mots-clés : maximal antichain, maximal antichain lattice.
@article{TIMM_2017_23_3_a7,
     author = {I. A. Derendiaev},
     title = {On maximal antichain lattices of finite posets},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {95--104},
     year = {2017},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a7/}
}
TY  - JOUR
AU  - I. A. Derendiaev
TI  - On maximal antichain lattices of finite posets
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 95
EP  - 104
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a7/
LA  - ru
ID  - TIMM_2017_23_3_a7
ER  - 
%0 Journal Article
%A I. A. Derendiaev
%T On maximal antichain lattices of finite posets
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 95-104
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a7/
%G ru
%F TIMM_2017_23_3_a7
I. A. Derendiaev. On maximal antichain lattices of finite posets. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 95-104. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a7/

[1] Birkhoff G., “Rings of sets”, Duke Math. J., 3:3 (1937), 443–454 | DOI | MR

[2] Behrendt G., “Maximal antichains in partially ordered sets”, Ars Combin., 1988, no. 25C, 149–157 | MR | Zbl

[3] Reuter K., “The jump number and the lattice of maximal antichains”, Discrete Math., 88:2–3 (1991), 289–307 | DOI | MR | Zbl

[4] Morvan M., Nourine L., “Simplicial elimination schemes, extremal lattices and maximal antichain lattices”, Order, 13:2 (1996), 159–173 | DOI | MR | Zbl

[5] Ganter B., Wille R., Formal concept analysis: Mathematical foundations, Springer-Verlag, Berlin; Heidelberg, 1999, 284 pp. | DOI | MR | Zbl

[6] Garg V., “Maximal antichain lattice algorithms for distributed computations”, Internat. Conf. on Distributed Computing and Networking, Lecture Notes Comp. Sci., 7730, 2013, 240–254 | DOI | MR | Zbl