Control with a guide in the guarantee optimization problem under functional constraints on the disturbance
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 82-94
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A motion control problem for a dynamic system under disturbances is considered on a finite time interval. There are compact geometric constraints on the values of the control and disturbance. The equilibrium condition in the small game is not assumed. The aim of the control is to minimize a given terminal quality index. The guaranteed result optimization problem is posed in the context of the game-theoretical approach. In the case when realizations of the disturbance belong to some a priori unknown compact subset of $L_1$ (the space of functions that are Lebesgue summable with the norm), we propose a new discrete-time control procedure with a guide. The proximity between the motions of the system and the guide is provided by the dynamic reconstruction of the disturbance. The quality of the control process is achieved by using an optimal counter-strategy in the guide. Conditions on the equations of motion under which this procedure ensures an optimal guaranteed result in the class of quasi-strategies are given. The scheme of the proof makes it possible to estimate the deviation of the realized value of the quality index from the value of the optimal result depending on the discretization parameter. Illustrative examples are given.
Keywords: guarantee optimization, functional constraints, quasi-strategies, control with a guide.
@article{TIMM_2017_23_3_a6,
     author = {M. I. Gomoyunov and D. A. Serkov},
     title = {Control with a guide in the guarantee optimization problem under functional constraints on the disturbance},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {82--94},
     year = {2017},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a6/}
}
TY  - JOUR
AU  - M. I. Gomoyunov
AU  - D. A. Serkov
TI  - Control with a guide in the guarantee optimization problem under functional constraints on the disturbance
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 82
EP  - 94
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a6/
LA  - ru
ID  - TIMM_2017_23_3_a6
ER  - 
%0 Journal Article
%A M. I. Gomoyunov
%A D. A. Serkov
%T Control with a guide in the guarantee optimization problem under functional constraints on the disturbance
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 82-94
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a6/
%G ru
%F TIMM_2017_23_3_a6
M. I. Gomoyunov; D. A. Serkov. Control with a guide in the guarantee optimization problem under functional constraints on the disturbance. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 82-94. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a6/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[2] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR

[3] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 516 pp. | MR

[4] Krasovskii A.N., Krasovskii N.N., Control under lack of information, Birkhauser, Berlin etc., 1995, 322 pp. | MR

[5] Serkov D.A., “Garantirovannoe upravlenie pri funktsionalnykh ogranicheniyakh na pomekhu”, Matematicheskaya teoriya igr i ee prilozheniya, 4:2 (2012), 71–95 | Zbl

[6] Serkov D.A., “O neuluchshaemosti strategii s polnoi pamyatyu v zadachakh optimizatsii garantirovannogo rezultata”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 204–217

[7] Kryazhimskii A.V., “The problem of optimization of the ensured result: unimprovability of full-memory strategies”, Constantin Caratheodory: An International Tribute, World Scientific Publ. Co, New York; London; Munich etc., 1991, 636–675 | DOI | MR

[8] Kryazhimskii A.V, Osipov Yu.S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR: Tekhn. kibernet., 1983, no. 2, 51–60

[9] Serkov D.A., “Optimalnoe po risku upravlenie pri funktsionalnykh ogranicheniyakh na pomekhu”, Matematicheskaya teoriya igr i ee prilozheniya, 5:1 (2013), 74–103 | MR | Zbl

[10] Bogachev V.I., Smolyanov O.G., Deistvitelnyi i funktsionalnyi analiz, universitetskii kurs, Institut kompyuternykh issledovanii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.; Izhevsk, 2009, 724 pp.

[11] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1984, 752 pp. | MR

[12] Natanson I.P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR

[13] Bellman R., Kuk K.L., Differentsialno-raznostnye uravneniya, Mir, M., 1967, 548 pp. | MR