Voir la notice du chapitre de livre
Mots-clés : optimal algorithm
@article{TIMM_2017_23_3_a5,
author = {E. Kh. Gimadi},
title = {An optimal algorithm for an outerplanar facility location problem with improved time complexity},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {74--81},
year = {2017},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a5/}
}
TY - JOUR AU - E. Kh. Gimadi TI - An optimal algorithm for an outerplanar facility location problem with improved time complexity JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 74 EP - 81 VL - 23 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a5/ LA - ru ID - TIMM_2017_23_3_a5 ER -
E. Kh. Gimadi. An optimal algorithm for an outerplanar facility location problem with improved time complexity. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 74-81. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a5/
[1] Discrete location theory, Wiley-Interscience Series in Discrete Mathematics and Optimization, eds. eds. P.B. Mirchandani, R.L. Francis, Wiley and Sons Inc., N.Y.; Chichester; Brisbane; Toronto; Singapour, 1990, 576 pp. | MR | Zbl
[2] Trubin V.A., “Effektivnyi algoritm resheniya zadachi razmescheniya na seti v forme dereva”, Dokl. AN SSSR, 231:3 (1976), 547–550 | MR | Zbl
[3] Kolen A., “Solving covering problems and the uncapacitated plant location on the trees”, Eur. J. Oper. Res., 12:3 (1983), 266–278 | DOI | MR | Zbl
[4] Gimadi E.Kh., “Effektivnyi algoritm razmescheniya s oblastyami obsluzhivaniya, svyaznymi otnositelno atsiklicheskoi seti”, Upravlyaemye sistemy, sb. st., v. 23, IM SO RAN, Novosibirsk, 1983, 12–23
[5] Billionet A., Costa M.-C., “Solving the uncapacitated plant location problem on trees”, Discrete Appl. Math., 49:1–3 (1994), 51–59 | DOI | MR
[6] Ageev A.A., “Polinomialnyi algoritm resheniya zadachi razmescheniya na posledovatelno-parallelnoi seti”, Upravlyaemye sistemy, cb. st., v. 30, IM SO RAN, Novosibirsk, 1990, 3–16
[7] Gimadi E.Kh., “Zadacha razmescheniya na seti s tsentralno-svyaznymi oblastyami obsluzhivaniya”, Upravlyaemye sistemy, sb. st., v. 25, IM SO RAN, Novosibirsk, 1984, 38–47
[8] Valdes J., Tarjan R., Lawler E., “The recognition of series parallel digraphs”, SIAM J. Comput., 11:2 (1982), 298–313 | DOI | MR | Zbl
[9] Ageev A.A., “Grafy, matritsy i prosteishaya zadacha razmescheniya”, Upravlyaemye sistemy, sb. st., v. 7, IM SO RAN, Novosibirsk, 1989, 3–11
[10] Hassin R., Tamir A., “Efficient algorithm for optimization and selection on series-parallel graphs”, SIAM J. Algebraic Discrete Methods, 7:3 (1986), 379–389 | DOI | MR | Zbl