Aggregation equation with anisotropic diffusion
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 58-73
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A mixed problem for the aggregation equation with anisotropic degenerating diffusion is studied. The uniqueness of the solution is proved by the method of energy estimates. For this, a special test function is constructed as a solution of an auxiliary elliptic problem. Preliminarily, we study a problem with smooth data, where the nonlocal term with convolution is replaced by a smooth vector. For this problem, we establish the nonnegativity of the solution and find an upper bound for its growth. The existence of the solution is first proved for the nondegenerate equation by a combination of the iteration method and the method of contracting mappings. Passing to the limit, we obtain a solution of the degenerate limit problem from solutions $u_{\varepsilon}$ of the approximating equation. Here, we apply the compactness principle in $L_1$, which is similar to the principle developed in the known paper by Alt and Luckhaus. The equations under consideration appear in biological aggregation models.
Keywords: aggregation equation, uniqueness of solution.
Mots-clés : anisotropic diffusion, solution existence
@article{TIMM_2017_23_3_a4,
     author = {V. F. Vil'danova},
     title = {Aggregation equation with anisotropic diffusion},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {58--73},
     year = {2017},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a4/}
}
TY  - JOUR
AU  - V. F. Vil'danova
TI  - Aggregation equation with anisotropic diffusion
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 58
EP  - 73
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a4/
LA  - ru
ID  - TIMM_2017_23_3_a4
ER  - 
%0 Journal Article
%A V. F. Vil'danova
%T Aggregation equation with anisotropic diffusion
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 58-73
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a4/
%G ru
%F TIMM_2017_23_3_a4
V. F. Vil'danova. Aggregation equation with anisotropic diffusion. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 58-73. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a4/

[1] Bertozzi A., Slepcev D., “Existence and Uniqueness of Solutions to an Aggregation Equation with Degenerate Diffusion”, Comm. Pur. Appl. Anal., 6:9 (2010), 1617–1637 | DOI | MR | Zbl

[2] Boi S., Capasso V., Morale D., “Modeling the aggregative behavior of ants of the species polyergus rufescens”, Nonlinear Anal. Real World Appl., 1:1 (2000), 163–176 | DOI | MR | Zbl

[3] R. Eftimie, G. Vries, M.A. Lewis, F. Lutscher, “Modeling group formation and activity patterns in self-organizing collectives of individuals”, Bull. Math. Biol., 146:69 (2007), 1537–1565 | DOI | MR

[4] Milewski P.A., Yang X., “A simple model for biological aggregation with asymmetric sensing”, Commun. Math. Sci., 6:2 (2008), 397–416 | DOI | MR | Zbl

[5] Morale D., Capasso V., Oelschlager K., “An interacting particle system modelling aggregation behavior: from individuals to populations”, J. Math. Biol., 50:1 (2005), 49–66 | DOI | MR | Zbl

[6] Topaz C.M., Bertozzi A.L., Lewis M.A., “A nonlocal continuum model for biological aggregation”, Bull. Math. Biol., 68:7 (2006), 1601–1623 | DOI | MR | Zbl

[7] Topaz C.M.,Bertozzi A.L., “A swarming patterns in a two-dimensional kinematic model for biological groups”, SIAM J. Appl. Math., 65:1 (2004), 152–174 | DOI | MR | Zbl

[8] Burger M., Fetecau R. C., Huang Y., “A Stationary states and asymptotic behavior of aggregation models with nonlinear local repulsion”, SIAM J. Appl. Dyn. Syst., 13:1 (2014), 397–424 | DOI | MR | Zbl

[9] Blanchet A., Carrillo J. A., Laurencot P., “Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions”, Calc. Var. Partial Differential Equations, 35:2 (2009), 133–168 | DOI | MR | Zbl

[10] J.A. Carrillo, S. Hittmeir, B. Volzone, Y. Yao., Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics, 2016, 47 pp., arXiv: 1603.07767

[11] Andriyanova E.R., Mukminov F.Kh., “Suschestvovanie i kachestvennye svoistva resheniya pervoi smeshannoi zadachi dlya parabolicheskogo uravneniya s dvoinoi nestepennoi nelineinostyu”, Mat. sb., 207:1 (2016), 3–44 | DOI | MR | Zbl

[12] Ladyzhenskaya O.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 576 pp. | MR

[13] Lions Zh.-L.,Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp. | MR

[14] Stein E.M., Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, 1971, 312 pp. | MR | Zbl

[15] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[16] Guschin A.K., “Nekotorye svoistva obobschennogo resheniya vtoroi kraevoi zadachi dlya parabolicheskogo uravneniya”, Mat. sb., 97:2 (6) (1975), 242–261 | MR

[17] Alt H.W., Luckhaus S., “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183:3 (1983), 311–341 | DOI | MR | Zbl

[18] Brezis H., Analyze functionally [Collection of Applied Mathematics for the Master's Degree], Paris, Masson, 1983 | MR