Voir la notice du chapitre de livre
Mots-clés : anisotropic diffusion, solution existence
@article{TIMM_2017_23_3_a4,
author = {V. F. Vil'danova},
title = {Aggregation equation with anisotropic diffusion},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {58--73},
year = {2017},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a4/}
}
V. F. Vil'danova. Aggregation equation with anisotropic diffusion. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 58-73. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a4/
[1] Bertozzi A., Slepcev D., “Existence and Uniqueness of Solutions to an Aggregation Equation with Degenerate Diffusion”, Comm. Pur. Appl. Anal., 6:9 (2010), 1617–1637 | DOI | MR | Zbl
[2] Boi S., Capasso V., Morale D., “Modeling the aggregative behavior of ants of the species polyergus rufescens”, Nonlinear Anal. Real World Appl., 1:1 (2000), 163–176 | DOI | MR | Zbl
[3] R. Eftimie, G. Vries, M.A. Lewis, F. Lutscher, “Modeling group formation and activity patterns in self-organizing collectives of individuals”, Bull. Math. Biol., 146:69 (2007), 1537–1565 | DOI | MR
[4] Milewski P.A., Yang X., “A simple model for biological aggregation with asymmetric sensing”, Commun. Math. Sci., 6:2 (2008), 397–416 | DOI | MR | Zbl
[5] Morale D., Capasso V., Oelschlager K., “An interacting particle system modelling aggregation behavior: from individuals to populations”, J. Math. Biol., 50:1 (2005), 49–66 | DOI | MR | Zbl
[6] Topaz C.M., Bertozzi A.L., Lewis M.A., “A nonlocal continuum model for biological aggregation”, Bull. Math. Biol., 68:7 (2006), 1601–1623 | DOI | MR | Zbl
[7] Topaz C.M.,Bertozzi A.L., “A swarming patterns in a two-dimensional kinematic model for biological groups”, SIAM J. Appl. Math., 65:1 (2004), 152–174 | DOI | MR | Zbl
[8] Burger M., Fetecau R. C., Huang Y., “A Stationary states and asymptotic behavior of aggregation models with nonlinear local repulsion”, SIAM J. Appl. Dyn. Syst., 13:1 (2014), 397–424 | DOI | MR | Zbl
[9] Blanchet A., Carrillo J. A., Laurencot P., “Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions”, Calc. Var. Partial Differential Equations, 35:2 (2009), 133–168 | DOI | MR | Zbl
[10] J.A. Carrillo, S. Hittmeir, B. Volzone, Y. Yao., Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics, 2016, 47 pp., arXiv: 1603.07767
[11] Andriyanova E.R., Mukminov F.Kh., “Suschestvovanie i kachestvennye svoistva resheniya pervoi smeshannoi zadachi dlya parabolicheskogo uravneniya s dvoinoi nestepennoi nelineinostyu”, Mat. sb., 207:1 (2016), 3–44 | DOI | MR | Zbl
[12] Ladyzhenskaya O.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 576 pp. | MR
[13] Lions Zh.-L.,Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp. | MR
[14] Stein E.M., Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, 1971, 312 pp. | MR | Zbl
[15] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR
[16] Guschin A.K., “Nekotorye svoistva obobschennogo resheniya vtoroi kraevoi zadachi dlya parabolicheskogo uravneniya”, Mat. sb., 97:2 (6) (1975), 242–261 | MR
[17] Alt H.W., Luckhaus S., “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183:3 (1983), 311–341 | DOI | MR | Zbl
[18] Brezis H., Analyze functionally [Collection of Applied Mathematics for the Master's Degree], Paris, Masson, 1983 | MR