Modified Bernstein function and a uniform approximation of some rational fractions by polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 43-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

P. L. Chebyshev posed and solved (1857, 1859) the problem of finding an improper rational fraction least deviating from zero in the uniform metric on a closed interval among rational fractions whose denominator is a fixed polynomial of a given degree $m$ that is positive on the interval and numerator is a polynomial of a given degree $n\ge{m}$ with unit leading coefficient. A. A. Markov solved (1884) a similar problem in the case when the denominator is the square root of a given positive polynomial. In the 20th century, this research direction was developed by S. N. Bernstein, N. I. Akhiezer, and other mathematicians. For example, in 1964 G. Szegő extended Chebyshev's result to the case of trigonometric fractions using the methods of complex analysis. In this paper, using the methods of real analysis and developing Bernstein's approach, we find the best uniform approximation on a period by trigonometric polynomials of certain order for an infinite series of proper trigonometric fractions of a special form. It turned out that, in the periodic case, it is natural to formulate some results in terms of the generalized Poisson kernel $\Pi_{\rho,\xi}(t)=(\cos\xi)P_\rho(t)+(\sin\xi)Q_\rho(t)$, which is a linear combination of the Poisson kernel $P_\rho(t)=(1-\rho^2)/[2(1+\rho^2-2\rho\cos{t})]$ and the conjugate Poisson kernel $Q_\rho(t)=\rho\sin{t}/(1+\rho^2-2\rho\cos{t})$, where $\rho\in(-1,1)$ and $\xi\in\mathbb{R}$. We find the best uniform approximation on a period by the subspace $\mathcal{T}_{n}$ of trigonometric polynomials of order at most $n$ for the linear combination $\Pi_{\rho,\xi}(t)+(-1)^{n}\Pi_{\rho,\xi}(t+\pi)$ of the generalized Poisson kernel and its shift. For $\xi=0$, this yields Bernstein's known results on the best uniform approximation on $[-1,1]$ of the fractions $1/(x^2-a^2)$ and $x/(x^2-a^2)$ by algebraic polynomials. For $\xi={\pi}/{2}$, we obtain the weight analogs (with weight $\sqrt{1-x^2}$) of these results. In addition, we find the value of the best uniform approximation on a period by the subspace $\mathcal{T}_{n}$ of a special linear combination of the mentioned Poisson kernel $P_\rho$ and the Poisson kernel $K_\rho$ for the biharmonic equation in the unit disk.
Keywords: Bernstein functions, uniform approximation.
Mots-clés : Poisson kernels
@article{TIMM_2017_23_3_a3,
     author = {A. G. Babenko and Yu. V. Kryakin},
     title = {Modified {Bernstein} function and a uniform approximation of some rational fractions by polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {43--57},
     year = {2017},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a3/}
}
TY  - JOUR
AU  - A. G. Babenko
AU  - Yu. V. Kryakin
TI  - Modified Bernstein function and a uniform approximation of some rational fractions by polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 43
EP  - 57
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a3/
LA  - ru
ID  - TIMM_2017_23_3_a3
ER  - 
%0 Journal Article
%A A. G. Babenko
%A Yu. V. Kryakin
%T Modified Bernstein function and a uniform approximation of some rational fractions by polynomials
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 43-57
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a3/
%G ru
%F TIMM_2017_23_3_a3
A. G. Babenko; Yu. V. Kryakin. Modified Bernstein function and a uniform approximation of some rational fractions by polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 43-57. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a3/

[1] Akhiezer N., “Sur la valeur asimptoticue de la meilleure approximation de quelques fractions par des polyn$\hat{\mathrm{o}}$mes”, Compt. Rend. Acad. Sci., 191 (1930), 991–993

[2] Akhiezer N.I., Lektsii po teorii approksimatsii, OGIZ. Gos. izd-vo tekh.-teoret. lit-ry, M.; L., 1947, 323 pp. | MR

[3] Babenko A.G., Kryakin Yu.V., “Integralnoe priblizhenie kharakteristicheskoi funktsii intervala trigonometricheskimi polinomami”, Tr. In-ta matematiki i mekhaniki, 14:3 (2008), 19–37

[4] Babenko A.G., Kryakin Yu.V., Yudin V.A., “Ob odnom rezultate Geronimusa”, Tr. In-ta matematiki i mekhaniki, 16:4 (2010), 54–64

[5] Baraboshkina N.A., “Priblizhenie garmonicheskikh funktsii algebraicheskimi mnogochlenami na okruzhnosti radiusa menshe edinitsy s nalichiem ogranichenii na edinichnoi okruzhnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:2 (2013), 71–78 | MR

[6] Bernshtein S.N., Sobranie sochinenii, v 4 t., v. 1, Konstruktivnaya teoriya funktsii (1905-1930), AN SSSR, M., 1952, 581 pp. | MR

[7] Bernshtein S.N., Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, Ch. 1, Gl. red. obschetekhn. lit-ry, L.; M., 1937, 203 pp.

[8] Zigmund A., Trigonometricheskie ryady, per. s angl., v. 1, Mir, M., 1965, 616 pp. | MR

[9] Dzjadyk V.K., “On a problem of Chebyshev and Markov”, Analysis Math., 3 (1977), 171–175 | DOI | MR | Zbl

[10] Lebedev V.I., “Ekstremalnye mnogochleny i metody optimizatsii vychislitelnykh algoritmov”, Mat. sb., 195:10 (2004), 21–66 | DOI | Zbl

[11] Lukashov A.L., “Algebraicheskie drobi Chebysheva - Markova na neskolkikh otrezkakh”, Analysis Math., 24 (1998), 111–130 | DOI | MR | Zbl

[12] Markov A.A., “Opredelenie nekotoroi funktsii po usloviyu naimenee uklonyatsya ot nulya”, Soobsch. i protokoly zasedanii mat. o-va pri Imperatorskom kharkovskom un-te, I (1884), 83–92

[13] Markov A.A., Izbrannye trudy po teorii nepreryvnykh drobei i teorii funktsii, naimenee uklonyayuschikhsya ot nulya, Gostekhizdat, M.; L., 1948, 411 pp. | MR

[14] Nikolskii S.M., Kurs matematicheskogo analiza, v. 1, Nauka, M., 1990, 528 pp. | MR

[15] Pashkovskii S., Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, per.s polsk., Nauka, M., 1983, 384 pp. | MR

[16] Rusak V.N., Ratsionalnye funktsii kak apparat priblizheniya, Izd-vo BGU, Minsk, 1979, 176 pp. | MR

[17] Szegö G., “On a problem of the best approximation”, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 27:3 (1964), 193–198 | DOI | MR | Zbl

[18] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, ucheb. posobie dlya vuzov, 5-e izd., Nauka, M., 1977, 735 pp. | MR

[19] Chebyshev P.L., Poln. sobr. soch., v 5 t., v. 2, Matematicheskii analiz, Izd-vo AN SSSR, M.; L., 1948, 520 pp. ; т. 3, Математический анализ, 414 с. | MR

[20] Shabozov M.Sh., “Nailuchshee i nailuchshee odnostoronnee priblizheniya yadra bigarmonicheskogo uravneniya i optimalnoe vosstanovlenie znachenii operatorov”, Ukr. mat. zhurn., 47:11 (1995), 1549–1557 | MR | Zbl