Explicit expression for a hyperbolic limit cycles of a class of polynomial differential systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 300-307
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider systems of differential equations in the plane, $$x^{\prime }=\frac{dx}{dt}=P(x,y),\ \ \ y^{\prime }=\frac{dy}{dt}=Q(x,y),$$ where the dependent variables $x$ and $y$ and the independent one (the time) $t$ are real, and $P( x,y),$ $Q( x,y)$ are polynomials in the variables $x$ and $y$ with real coefficients. These differential systems are mathematical models and arise in many fields of application like biology, economics, physics and engineering, etc. The existence of limit cycles is one of the more difficult objects to study in the qualitative theory of differential systems in the plane. There is a huge literature dedicated to this topic. It is known that for differential systems defined on the plane the existence of a first integral determines their phase portrait. Thus for polynomial differential systems a natural question arises: given a polynomial differential system in the plane, how to recognize if it has a first integral? There is a strong relation between the invariant algebraic curves and the theory of integrability. In this paper we introduce explicit expressions for invariant algebraic curves and for the first integral. Finally, we determine sufficient conditions for a class of polynomial differential systems to possess an explicitly given hyperbolic limit cycle. Concrete examples exhibiting the applicability of our results are introduced. The elementary method used in this paper seems to be fruitful to investigate more general planar dynamical systems in order to obtain explicitly some or all of their limit cycles at least in the case of hyperbolic cycles. In the spirit of the inverse approach to dynamical systems, we look for them as the ovals of suitably chosen invariant algebraic curves.
Keywords: planar polynomial differential system, invariant algebraic curve, first integral, limit cycle.
@article{TIMM_2017_23_3_a27,
     author = {R. Boukoucha},
     title = {Explicit expression for a hyperbolic limit cycles of a class of polynomial differential systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {300--307},
     year = {2017},
     volume = {23},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a27/}
}
TY  - JOUR
AU  - R. Boukoucha
TI  - Explicit expression for a hyperbolic limit cycles of a class of polynomial differential systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 300
EP  - 307
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a27/
LA  - en
ID  - TIMM_2017_23_3_a27
ER  - 
%0 Journal Article
%A R. Boukoucha
%T Explicit expression for a hyperbolic limit cycles of a class of polynomial differential systems
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 300-307
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a27/
%G en
%F TIMM_2017_23_3_a27
R. Boukoucha. Explicit expression for a hyperbolic limit cycles of a class of polynomial differential systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 300-307. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a27/

[1] Bendjeddou A., Boukoucha R., “Explicit limit cycles of a cubic polynomial differential systems”, Stud. Univ. Babes-Bolyai Math., 61:1 (2016), 77–85 | MR

[2] Bendjeddou A., Cheurfa R., “Coexistence of algebraic and non-algebraic limit cycles for quintic polynomial differential systems”, Elect. J. Diff. Equ., 2017:71 (2017), 1–7 | MR

[3] Bendjeddou A., Cheurfa R., “Cubic and quartic planar differential systems with exact algebraic limit cycles”, Elect. J. Diff. Equ, 2011:15 (2011), 1–12 | MR

[4] Bendjeddou A., Cheurfa R., “On the exact limit cycle for some class of planar differential systems”, Nonlinear Diff. Equ. Appl., 14 (2007), 491–498 | DOI | MR | Zbl

[5] Benterki R., Llibre J., “Polynomial differential systems with explicit non-algebraic limit cycles”, Elect. J. Diff. Equ, 2012:78 (2012), 1–6 | MR

[6] Boukoucha R., “On the dynamics of a class of Kolmogorov systems”, Siberian Elect. Math. Reports, 13 (2016), 734–739 | DOI | MR | Zbl

[7] Cairo L., Llibre J., “Phase portraits of cubic polynomial vector fields of Lotka-Volterra type having a rational first integral of degree 2”, J. Phys. A, 40 (2007), 6329–6348 | DOI | MR | Zbl

[8] Dumortier F., Llibre J., ArtDes J., Qualitative theory of planar differential systems, Universitext, Springer, Berlin, 2006, 302 pp. | DOI | MR | Zbl

[9] Gao P., “Hamiltonian structure and first integrals for the Lotka-Volterra systems”, Phys. Lett. A, 273 (2000), 85–96 | DOI | MR | Zbl

[10] Gasull A., Giacomini H. and Torregrosa J., “Explicit non-algebraic limit cycles for polynomial systems”, J. Comput. Appl. Math., 200:1 (2007), 448–457 | DOI | MR | Zbl

[11] Hilbert D., “Mathematische Probleme”, Lecture, Second Internat. Congr. Math., English transl., Bull. (Paris, 1900), Nachr. Ges. Wiss. Gttingen Math. Phys. Kl., 1900, 253–297 | Zbl

[12] Perko L., Differential equations and dynamical systems, Ser. Texts Appl. Math., 7, Third ed., Springer-Verlag, New York, 2001, 555 pp. | DOI | MR | Zbl

[13] Poincaré H., “Sur lintégration des équations différentielles du premier ordre et du premier degré I and II”, Rendiconti del Circolo Matematico di Palermo, 5 (1891), 161–191 | DOI | Zbl