Uniform Lebesgue constants of local spline approximation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 292-299 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let a function $\varphi\in C^1[-h,h]$ be such that $\varphi(0)=\varphi'(0)=0$, $\varphi(-x)=\varphi(x)$ for $x\in [0;h])$, and $\varphi(x)$ is nondecreasing on $[0;h]$. For any function $f:\ \mathbb R\to \mathbb R$, we consider local splines of the form $$S(x)=S_{\varphi}(f,x)=\sum_{j\in \mathbb Z} y_j B_{\varphi}\Big( x+\frac{3h}{2}-jh\Big)\quad (x\in \mathbb R),$$ where $y_j=f(jh)$, $m(h)>0$, and $$B_{\varphi}(x)=m(h)\left\{\begin{array}{cl}\varphi(x), x\in [0;h],\\ 2\varphi(h)-\varphi(x-h)-\varphi(2h-x), x\in [h;2h], \\ \varphi(3h-x), x\in [2h;3h],\\ 0, x\not\in [0;3h]. \end{array} \right.$$ These splines become parabolic, exponential, trigonometric, etc., under the corresponding choice of the function $\varphi$. We study the uniform Lebesgue constants $L_{\varphi}=\|S\|_C^C$ (the norms of linear operators from $C$ to $C$) of these splines as functions depending on $\varphi$ and $h$. In some cases, the constants are calculated exactly on the axis $\mathbb R$ and on a closed interval of the real line (under a certain choice of boundary conditions from the spline $S_{\varphi}(f,x)$).
Mots-clés : Lebesgue constants
Keywords: local splines, three-point system.
@article{TIMM_2017_23_3_a26,
     author = {V. T. Shevaldin},
     title = {Uniform {Lebesgue} constants of local spline approximation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {292--299},
     year = {2017},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a26/}
}
TY  - JOUR
AU  - V. T. Shevaldin
TI  - Uniform Lebesgue constants of local spline approximation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 292
EP  - 299
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a26/
LA  - ru
ID  - TIMM_2017_23_3_a26
ER  - 
%0 Journal Article
%A V. T. Shevaldin
%T Uniform Lebesgue constants of local spline approximation
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 292-299
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a26/
%G ru
%F TIMM_2017_23_3_a26
V. T. Shevaldin. Uniform Lebesgue constants of local spline approximation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 292-299. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a26/

[1] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972, 318 pp. | MR

[2] Shevaldin V.T., “Otsenki snizu poperechnikov klassov istokoobrazno predstavimykh funktsii”, Tr. MIAN SSSR, 189 (1989), 185–201 | MR

[3] Rvachev V.A., “Finitnye resheniya funktsionalno-differentsiruemykh uravnenii i ikh prilozheniya”, Uspekhi mat. nauk, 45:1 (1990), 77–103 | MR | Zbl

[4] Leontev V.L., Ortogonalnaya finitnye funktsii i chislennye metody, Izd-vo UlGU, Ulyanovsk, 2003, 178 pp. | MR

[5] Kvasov B.I., Metody izogeometricheskoi approksimatsii splainami, Fizmatlit, M., 2006, 360 pp.

[6] Demyanovich Yu.K., “Veivlet-bazis B$\phi$-splainov dlya neravnomernoi setki”, Mat. modelirovanie, 18:10 (2006), 123–126 | MR | Zbl

[7] Shevaldin V.T., Approksimatsiya lokalnymi splainami, Izd-vo UrO RAN, Ekaterinburg, 2014, 198 pp.

[8] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[9] Subbotin Yu.N., “Nasledovanie svoistv monotonnosti i vypuklosti pri lokalnoi approksimatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 33:7 (1993), 996–1003 | MR | Zbl

[10] Shevaldin V.T., “Approksimatsiya lokalnymi parabolicheskimi splainami s proizvolnym raspolozheniem uzlov”, Sib. zhurn. vychisl. matematiki, 8:1 (2005), 77–88 | Zbl

[11] Kostousov K.V., Shevaldin V.T., “Approximation by local exponential splines”, Proc. Steklov Inst. Math., Suppl. 1, 2004, 147–157 | MR

[12] Kostousov K.V., Shevaldin V.T., “Approksimatsiya lokalnymi trigonometricheskimi splainami”, Mat. zametki, 77:3 (2005), 354–363 | DOI | MR | Zbl