@article{TIMM_2017_23_3_a24,
author = {O. V. Khamisov},
title = {Approximation of the measure of a convex compact set},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {272--279},
year = {2017},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a24/}
}
O. V. Khamisov. Approximation of the measure of a convex compact set. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 272-279. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a24/
[1] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976, 544 pp. | MR
[2] Shilov G.E., Gurevich B.L., Integral, mera i proizvodnaya, Nauka, M., 1967, 220 pp. | MR
[3] Mikhailov G.A., Voitishek A.V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Izd. tsentr “Akademiya”, M., 2006, 368 pp.
[4] Lovasz L., Simonovits M., “Random walks in a convex body and an improved volume algorithm”, Random structures algorithms, 1993, no. 4, 359–412 | DOI | MR | Zbl
[5] Bronshtein E.M., “Approksimatsiya vypuklykh mnozhestv mnogogrannikami”, Sovremennaya matematika. Fundamentalnye napravleniya, 22 (2007), 5–37
[6] Prekopa A., Stochastic programming, Kluwer Acad. Publ., Dordrecht, Boston, 1995, 599 pp. | MR
[7] Norkin V.I., Roenko N.V., “$\alpha$-vognutye funktsii i mery i ikh primeneniya”, Kibernetika i sistemnyi analiz, 1991, no. 6, 77–88 | Zbl
[8] Aschepkov L.T., “O postroenii maksimalnogo kuba, vpisannogo v zadannuyu oblast”, Zhurn. vychisl. matematiki i mat. fiziki, 20:2 (1980), 510–513 | MR
[9] Khachiyan L.G., “Zadacha vychisleniya ob'ema mnogogrannika perechislitelno trudna”, Uspekhi mat. nauk, 44:3 (1989), 179–180 | MR
[10] Tuy H., Al-Khayyal F., Thach P.T., “Monotonic optimization: Branch and cut methods”, Essays and Surveys in Global Optimization, eds. eds. C. Audet, P. Hansen, G. Savard, Springer, Berlin, etc., 2005, 39–78 | DOI | MR | Zbl