On multiply monotone functions.
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 257-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The subject and the method of this paper belong to classical analysis. The Wiener Banach algebra (the normed ring) $A(\mathbb{R}^d)$, $d\in\mathbb N$, is the space of Fourier transforms of functions from $L_1(\mathbb{R}^d)$ (with pointwise product). The membership in this algebra is essential for Fourier multipliers from $L_1$ to $L_1$ and principal for the convergence on the space $L_1$ of summation methods for Fourier series and integrals given by one factor function. A function $f$ is called $m$-multiply monotone on $\mathbb{R}_+=(0,+\infty)$ if $(-1)^{\nu}f^{(\nu)}(t)\ge 0$ for $t\in \mathbb{R}_+$ and $0\le\nu\le m+1$. For such functions, Shoenberg's integral presentation has long been known, which becomes Bernstein's formula for monotone functions as $m\to \infty$. Denote by $V_0(\mathbb{R}_+)$ the set of functions of bounded variation on $\mathbb{R}_+$, i.e., the set of functions representable as the difference of two bounded monotone functions. Denote by $V_m(\mathbb{R}_+)$, $m\in\mathbb N$, the space of functions $f$ from $V_{0,\mathrm{loc}}(\mathbb{R}_+)$ such that $\|f\|_{V_m}=\sup_{t\in \mathbb{R}_+}|f(t)|+\int_0^\infty t^m|df^{(m)}(t)|\infty$. This is a Banach algebra. A function $f$ belongs to $V_m(\mathbb{R}_+)$ if and only if $f$ can be represented as the difference of two bounded functions with convex derivatives of order $m-1$ (Theorem 1). We also study conditions under which functions of the form $f_0(|x|_{p,d})$, where $|x|_{p,d}=\big(\sum_{j=1}^d |x_j|^p\big)^{1/p}$, $x=(x_1,\ldots,x_d)$, for $p\in (0,\infty)$ and $|x|_\infty=\max\limits_{1\le j\le d}|x_j|$, belong to $A(\mathbb{R}^d)$. The case $p=2$ (radial functions) is well studied, including the Pólya–Askey criterion of the positive definiteness of functions on $\mathbb {R}^d$. We prove Theorem 2, which has the following corollaries. (1) If $f_0\in C_0[0,\infty)$ and $f_0\in V_d(\mathbb{R}_+)$, then $f_0(|x|_{p,d})\in A(\mathbb{R}^d)$ for $p\in [1,\infty]$. (2) If $f_0\in C_0[0,\infty)$ and $f_0\in V_{d+1}(\mathbb{R}_+)$, then $f_0(|x|_{p,d})\in A(\mathbb{R}^d)$ for $p\in (0,1)$. We give some examples, including an example with an oscillating function.
Keywords: function of bounded variation, convex function, multiply monotone function, completely monotone function, positive definite function
Mots-clés : Fourier transform.
@article{TIMM_2017_23_3_a23,
     author = {R. M. Trigub},
     title = {On multiply monotone functions.},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {257--271},
     year = {2017},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a23/}
}
TY  - JOUR
AU  - R. M. Trigub
TI  - On multiply monotone functions.
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 257
EP  - 271
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a23/
LA  - ru
ID  - TIMM_2017_23_3_a23
ER  - 
%0 Journal Article
%A R. M. Trigub
%T On multiply monotone functions.
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 257-271
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a23/
%G ru
%F TIMM_2017_23_3_a23
R. M. Trigub. On multiply monotone functions.. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 257-271. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a23/

[1] Stein E.M., Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970, 304 pp. | MR | Zbl

[2] Stein E.M., Weiss G., Introduction of Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, 1971, 312 pp. | MR

[3] Liflyand E., Samko S., Trigub R., “Absolute convergence of Fourier integrals”, Analysis and Math. Physis, 2:1 (2012), 1–68 | DOI | MR | Zbl

[4] Trigub R., Belinsky E., Fourier analysis and approximation of functions, Kluwer-Springer, Dordrecht, 2004, 585 pp. | MR | Zbl

[5] Trigub R.M., “O multiplikatorakh Fure i absolyutnoi skhodimosti integralov Fure radialnykh funktsii”, Ukr. mat. zhurn., 62:9 (2010), 1280–1293 | MR | Zbl

[6] Belinsky E., Liflyand E. and Trigub R., “The Banach algebra A* and its properties”, J. Fourier Anal. Appl., 3:2 (1997), 103–129 | DOI | MR

[7] Beurling A., “On the spectral synthesis of bounded functions”, Acta Math., 81 (1949), 225–238 | DOI | MR | Zbl

[8] Schoenberg I.J., “On integral representations of completely monotone and related functions”, abstract, Bull. Amer. Math. Soc., 47 (1941), 208

[9] Williamson R.E., “Multiply monotone functions and their Laplace transforms”, Duke Math. J., 23 (1956), 189–207 | DOI | MR | Zbl

[10] Askey R., Radial characteristic functions, Tech. Report no. 1262, Math. Resc. Center, University of Wisconsin, Madison, 1973

[11] Schoenberg I.J., “Metric spaces and completely monotone functions”, Ann. Math. Soc., 39 (1938), 811–841 | DOI | MR

[12] Trebels W., Multipliers for (C,$\alpha$)-bounded Fourier expansions in Banach spaces and approximation theory, Lect. Notes Math., 329, Springer-Verlag, Berlin etc., 1973, 103 pp. | DOI | MR

[13] Trigub R.M., “Preobrazovanie Fure kvazivypuklykh funktsii i funktsii klassa V *”, Ukr. mat. visnik, 11:2 (2014), 274–286

[14] Trebels W., “Some Fourier multiplier criteria and the spherical Bochner-Riesz kernel”, Rev. Roumaine Math. Pures Appl., 20:10 (1975), 1173–1185 | MR | Zbl

[15] Trigub R.M., “Absolyutnaya skhodimost integralov Fure, summiruemost ryadov Fure i priblizhenie polinomami funktsii na tore”, Izv. AN SSSR. Ser. matematicheskaya, 44:6 (1980), 1378–1409 | MR | Zbl

[16] Liflyand I.R., Trigub R.M., “O predstavlenii funktsii v vide absolyutno skhodyaschegosya integrala Fure”, Tr. MIAN, 269 (2010), 153–166 | Zbl

[17] Zastavnyi V.P., “On positive definiteness of some functions”, J. Multivariate Anal., 73:1 (2000), 55–81 | DOI | MR | Zbl

[18] Trigub R.M., O preobrazovanii Fure funktsii dvukh peremennykh, zavisyaschikh lish ot maksimuma modulya etikh peremennykh, 2015, 30 pp., arXiv: 1512.03183v1

[19] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v. 3, Fizmatlit, M., 1969, 662 pp.