Convergence bounds for splines for three-point rational interpolants of continuous and continuously differentiable functions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 224-233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For functions $f(x)$ continuous on an interval $[a,b]$ and grids of pairwise different nodes $\Delta\colon a=x_0$ $(N\geqslant 2)$, we study the convergence rate of piecewise rational functions $R_{N,1} (x)=R_{N,1}(x,f)$ such that, for $x\in [x_{i-1}, x_i]$ ($i=1,2,\dots,N$), we have $R_{N,1}(x)=(R_i(x)(x-x_{i-1})+R_{i-1}(x)(x_i-x))/(x_i-x_{i-1})$, where $R_i(x)=\alpha_i+\beta_i(x-x_i)+\gamma_i/(x-g_i)$ ($i=1,2,\dots,N-1$); the coefficients $\alpha_i$, $\beta_i$, and $\gamma_i$ are defined by the conditions $R_i(x_j)=f(x_j)$ for $j=i-1,i,i+1$; and the poles $g_i$ are defined by the nodes. It is assumed that $R_0(x)\equiv R_1(x)$ and $R_N(x)\equiv R_{N-1} (x)$. Bounds for the convergence rate of $R_{N,1} (x,f)$ are found in terms of certain structural characteristics of the function: (1) the third-order modulus of continuity in the case of uniform grids; (2) the variation and the modulus of change of the first and second derivatives in the case of continuously differentiable functions $f(x)$; here, the bounds in terms of the variation have the order of the best polynomial spline approximations.
Keywords: splines, rational splines.
Mots-clés : interpolation splines
@article{TIMM_2017_23_3_a19,
     author = {A.-R. K. Ramazanov and V. G. Magomedova},
     title = {Convergence bounds for splines for three-point rational interpolants of continuous and continuously differentiable functions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {224--233},
     year = {2017},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a19/}
}
TY  - JOUR
AU  - A.-R. K. Ramazanov
AU  - V. G. Magomedova
TI  - Convergence bounds for splines for three-point rational interpolants of continuous and continuously differentiable functions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 224
EP  - 233
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a19/
LA  - ru
ID  - TIMM_2017_23_3_a19
ER  - 
%0 Journal Article
%A A.-R. K. Ramazanov
%A V. G. Magomedova
%T Convergence bounds for splines for three-point rational interpolants of continuous and continuously differentiable functions
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 224-233
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a19/
%G ru
%F TIMM_2017_23_3_a19
A.-R. K. Ramazanov; V. G. Magomedova. Convergence bounds for splines for three-point rational interpolants of continuous and continuously differentiable functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 224-233. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a19/

[1] Subbotin Yu.N., Chernykh N.I., “Poryadok nailuchshikh splain-priblizhenii nekotorykh klassov funktsii”, Mat. zametki, 7:1 (1970), 31–42 | Zbl

[2] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972, 319 pp. | MR

[3] Stechkin S.B., Subbotin Yu.N., Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp. | MR

[4] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[5] Korneichuk N.P., Splainy v teorii priblizheniya, Nauka, M., 1984, 352 pp. | MR

[6] Malozemov V.N., Pevnyi A.B., Polinomialnye splainy, Izd-vo LGU, L., 1986, 120 pp. | MR

[7] Schaback R., “Spezielle rationale Splinefunktionen”, J. Approx. Theory, 7:2 (1973), 281–292 | DOI | MR | Zbl

[8] Edeo A., Gofeb G., Tefera T., “Shape preserving $C^2$ rational cubic spline interpolation”, American Scientific Research Journal for Engineering, Technology and Sciences (ASRJETS), 12:1 (2015), 110–122

[9] Ramazanov A.-R.K., Magomedova V.G., “Splainy po ratsionalnym interpolyantam”, Dagestanskie elektron. mat. izv., 2015, no. 4, 22–31 | MR

[10] Ramazanov A.-R.K., Magomedova V.G., “Splainy po chetyrekhtochechnym ratsionalnym interpolyantam”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:4 (2016), 233–246 | MR

[11] Subbotin Yu.N., “Variatsii na temu splainov”, Fundament. i prikl. matematika, 3:4 (1997), 1043–1058 | MR | Zbl

[12] Sevastyanov E.A., “Kusochno-monotonnaya approksimatsiya i $\Phi$-variatsii”, Analysis Math., 1 (1975), 141–164 | DOI | Zbl

[13] Lagrange R., “Sur oscillations d'order superior d'une functions numerique”, Ann. Sci. Ecole Norm., 82, Sup. (3):2 (1965), 101–130 | DOI | MR | Zbl

[14] Chanturiya Z.A., “O ravnomernoi skhodimosti ryadov Fure”, Mat. sb., 100:4 (1976), 534–554 | MR | Zbl

[15] Whitney H., “On functions with bounded n-th differences”, J. Math. Pures Appl., 6(9):36 (1957), 67–95 | MR