Mots-clés : interpolation splines
@article{TIMM_2017_23_3_a19,
author = {A.-R. K. Ramazanov and V. G. Magomedova},
title = {Convergence bounds for splines for three-point rational interpolants of continuous and continuously differentiable functions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {224--233},
year = {2017},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a19/}
}
TY - JOUR AU - A.-R. K. Ramazanov AU - V. G. Magomedova TI - Convergence bounds for splines for three-point rational interpolants of continuous and continuously differentiable functions JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 224 EP - 233 VL - 23 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a19/ LA - ru ID - TIMM_2017_23_3_a19 ER -
%0 Journal Article %A A.-R. K. Ramazanov %A V. G. Magomedova %T Convergence bounds for splines for three-point rational interpolants of continuous and continuously differentiable functions %J Trudy Instituta matematiki i mehaniki %D 2017 %P 224-233 %V 23 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a19/ %G ru %F TIMM_2017_23_3_a19
A.-R. K. Ramazanov; V. G. Magomedova. Convergence bounds for splines for three-point rational interpolants of continuous and continuously differentiable functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 224-233. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a19/
[1] Subbotin Yu.N., Chernykh N.I., “Poryadok nailuchshikh splain-priblizhenii nekotorykh klassov funktsii”, Mat. zametki, 7:1 (1970), 31–42 | Zbl
[2] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972, 319 pp. | MR
[3] Stechkin S.B., Subbotin Yu.N., Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp. | MR
[4] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR
[5] Korneichuk N.P., Splainy v teorii priblizheniya, Nauka, M., 1984, 352 pp. | MR
[6] Malozemov V.N., Pevnyi A.B., Polinomialnye splainy, Izd-vo LGU, L., 1986, 120 pp. | MR
[7] Schaback R., “Spezielle rationale Splinefunktionen”, J. Approx. Theory, 7:2 (1973), 281–292 | DOI | MR | Zbl
[8] Edeo A., Gofeb G., Tefera T., “Shape preserving $C^2$ rational cubic spline interpolation”, American Scientific Research Journal for Engineering, Technology and Sciences (ASRJETS), 12:1 (2015), 110–122
[9] Ramazanov A.-R.K., Magomedova V.G., “Splainy po ratsionalnym interpolyantam”, Dagestanskie elektron. mat. izv., 2015, no. 4, 22–31 | MR
[10] Ramazanov A.-R.K., Magomedova V.G., “Splainy po chetyrekhtochechnym ratsionalnym interpolyantam”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:4 (2016), 233–246 | MR
[11] Subbotin Yu.N., “Variatsii na temu splainov”, Fundament. i prikl. matematika, 3:4 (1997), 1043–1058 | MR | Zbl
[12] Sevastyanov E.A., “Kusochno-monotonnaya approksimatsiya i $\Phi$-variatsii”, Analysis Math., 1 (1975), 141–164 | DOI | Zbl
[13] Lagrange R., “Sur oscillations d'order superior d'une functions numerique”, Ann. Sci. Ecole Norm., 82, Sup. (3):2 (1965), 101–130 | DOI | MR | Zbl
[14] Chanturiya Z.A., “O ravnomernoi skhodimosti ryadov Fure”, Mat. sb., 100:4 (1976), 534–554 | MR | Zbl
[15] Whitney H., “On functions with bounded n-th differences”, J. Math. Pures Appl., 6(9):36 (1957), 67–95 | MR