Regularization methods and issues of lexicographic correction for convex programming problems with inconsistent constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 214-223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider convex programming problems for which it is unknown in advance whether their constraints are consistent. For the numerical analysis of these problems, we propose to apply a multistep symmetric regularization of the classical Lagrange function with respect to both primal and dual variables and then to solve the arising minimax problems with a small parameter. The latter problems are always solvable and give either normal decisions of the original problems in the case of their propriety or, in the improper case, generalized solutions that minimize the discrepancies of the constraints and optimize the value of the objective function asymptotically with respect to the parameter. Minimax problems can also form a basis for the construction of new duality diagrams in convex programming, at least for improper settings. Regularization diagrams are provided, a primal minimax setting is written, theorems on the convergence and numerical stability of the method are proved, and an informal interpretation of the generalized solutions is given. The study develops the authors' earlier results obtained for linear programming problems.
Keywords: convex programming, duality, generalized solutions, regularization method, penalty function method.
@article{TIMM_2017_23_3_a18,
     author = {L. D. Popov and V. D. Skarin},
     title = {Regularization methods and issues of lexicographic correction for~convex programming problems with inconsistent constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {214--223},
     year = {2017},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a18/}
}
TY  - JOUR
AU  - L. D. Popov
AU  - V. D. Skarin
TI  - Regularization methods and issues of lexicographic correction for convex programming problems with inconsistent constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 214
EP  - 223
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a18/
LA  - ru
ID  - TIMM_2017_23_3_a18
ER  - 
%0 Journal Article
%A L. D. Popov
%A V. D. Skarin
%T Regularization methods and issues of lexicographic correction for convex programming problems with inconsistent constraints
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 214-223
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a18/
%G ru
%F TIMM_2017_23_3_a18
L. D. Popov; V. D. Skarin. Regularization methods and issues of lexicographic correction for convex programming problems with inconsistent constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 214-223. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a18/

[1] Eremin I. I., Mazurov Vl. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR

[2] Vatolin A. A., Mnozhestva razreshimosti i korrektsiya sedlovykh funktsii i sistem neravenstv, preprint, In-t matematiki i mekhaniki UrO AN SSSR, Sverdlovsk, 1989, 90 pp.

[3] Popov L. D., “Lineinaya korrektsiya nesobstvennykh minimaksnykh vypuklo-vognutykh zadach po maksiminnomu kriteriyu”, Zhurn. vychisl. matematiki i mat. fiziki, 26:9 (1986), 1100–1110

[4] Skarin V. D., “Ob odnom podkhode k analizu nesobstvennykh zadach lineinogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 26:3 (1986), 439–448 | MR | Zbl

[5] McCormick S. T., “How to compute least infeasible flows”, Math. Programming, 78:2 (1997), 179–194 | DOI | MR | Zbl

[6] Vada J., Slupphaug O., Johansen T. A., “Optimal prioritized infeasibility handling in model predictive control: parametric preemptive multiobjective linear programming approach”, J. Optim. Theory Appl., 109:2 (2001), 385–413 | DOI | MR | Zbl

[7] Leon T., Liern V., Vercher E., “Viability of infeasible portfolio selection problems: a fuzzy approach”, European J. Oper. Res., 139:1 (2002), 178–189 | DOI | MR | Zbl

[8] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 285 pp. | MR

[9] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981, 400 pp. | MR

[10] Eremin I. I., “O zadachakh posledovatelnogo programmirovaniya”, Sib. mat. zhurn., 14:1 (1973), 124–129

[11] Fedorov V. V., Chislennye metody maksimina, Nauka, M., 1979, 280 pp.

[12] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 352 pp. | MR

[13] Popov L.D., Skarin V.D., “On alternative duality and lexicographic correction of right-hand-side vector in improper linear programs of the 1st kind”, Proc. V Internat. Conf. on Optimization Methods and Applications, OPTIMA-2014 (Petrovac, Montenegro, September 28 - October 4, 2014), Moscow, 2014, 152–153