@article{TIMM_2017_23_3_a17,
author = {A. V. Mironenko},
title = {Uniform approximation by perfect splines},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {206--213},
year = {2017},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a17/}
}
A. V. Mironenko. Uniform approximation by perfect splines. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 206-213. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a17/
[1] Natanson I. P., Konstruktivnaya teoriya funktsii, Gos. izd-vo tekhniko-teoret. literatury, M.; L., 1949, 688 pp. | MR
[2] Mironenko A. V., “Ravnomernoe priblizhenie klassom funktsii s ogranichennoi proizvodnoi”, Mat. zametki, 74:5 (2003), 696–712 | DOI | MR | Zbl
[3] Korneichuk N. P., “O nailuchshem ravnomernom priblizhenii na nekotorykh klassakh nepreryvnykh funktsii”, Dokl. AN SSSR, 140:4 (1961), 748–751
[4] Korneichuk N. P., “O nailuchshem priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matematicheskaya, 27 (1963), 29–44
[5] Sattes U., Beste Approximation durch glatte Funktionen und Andwendungen in der intermediären Approximation, Dissertation, Universität Erlangen-Nürnberg, 1980
[6] Sattes U., “Best Chebyshev approximation by smooth functions”, Quantitative Approximation, Proc. Internat. Symposium (Bonn, 1979), eds. eds. R.A. Devore and K. Scherer, Acad. Press, New York, 1980, 279–289 | DOI | MR
[7] Brown A.L., “Best approximation by smooth functions and related problems”, Parametric optimization and approximation, Proc. Conf. Held at the Mathematisches Forschungsinstitut (Oberwolfach, 1983), Internat. Schriftenreihe. Numer. Math., 72, Birkhäuser, Basel, 1985, 70–82 | DOI | MR
[8] Oram J. A., “Best approximation by periodic smooth functions”, J. Approx. Theory., 92:1 (1998), 128–166 | DOI | MR | Zbl
[9] de Boor C., “A remark concerning perfect splines”, Bull. Amer. Math. Soc., 80:4 (1974), 724–727 | DOI | MR | Zbl
[10] Goodman T. N. T., Lee S. L., “Another extremal property of perfect splines”, Proc. of Amer. Math. Soc., 70:2 (1978), 129–135 | MR | Zbl