Uniform approximation by perfect splines
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 206-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of uniform approximation of a continuous function on a closed interval is considered. In the case of approximation by the class $W^{(n)}$ of functions whose $n$th derivative is bounded by 1 almost everywhere, a criterion for a best approximation element is known. This criterion, in particular, requires that the approximating function coincide on some subinterval with a perfect spline of degree $n$ with finitely many knots. Since perfect splines belong to the class $W^{(n)}$, we study the following restriction of the problem: a continuous function is approximated by the set of perfect splines with an arbitrary finite number of knots. We establish the existence of a perfect spline that is a best approximation element both in $W^{(n)}$ and in this set. This means that the values of best approximation in the problems are equal. We also show that the best approximation elements in this set satisfy a criterion similar to the criterion of best approximation in $W^{(n)}$. The set of perfect splines is shown to be everywhere dense in $W^{(n)}$.
Keywords: uniform approximation, functions with bounded derivative, perfect splines.
@article{TIMM_2017_23_3_a17,
     author = {A. V. Mironenko},
     title = {Uniform approximation by perfect splines},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {206--213},
     year = {2017},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a17/}
}
TY  - JOUR
AU  - A. V. Mironenko
TI  - Uniform approximation by perfect splines
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 206
EP  - 213
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a17/
LA  - ru
ID  - TIMM_2017_23_3_a17
ER  - 
%0 Journal Article
%A A. V. Mironenko
%T Uniform approximation by perfect splines
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 206-213
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a17/
%G ru
%F TIMM_2017_23_3_a17
A. V. Mironenko. Uniform approximation by perfect splines. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 206-213. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a17/

[1] Natanson I. P., Konstruktivnaya teoriya funktsii, Gos. izd-vo tekhniko-teoret. literatury, M.; L., 1949, 688 pp. | MR

[2] Mironenko A. V., “Ravnomernoe priblizhenie klassom funktsii s ogranichennoi proizvodnoi”, Mat. zametki, 74:5 (2003), 696–712 | DOI | MR | Zbl

[3] Korneichuk N. P., “O nailuchshem ravnomernom priblizhenii na nekotorykh klassakh nepreryvnykh funktsii”, Dokl. AN SSSR, 140:4 (1961), 748–751

[4] Korneichuk N. P., “O nailuchshem priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matematicheskaya, 27 (1963), 29–44

[5] Sattes U., Beste Approximation durch glatte Funktionen und Andwendungen in der intermediären Approximation, Dissertation, Universität Erlangen-Nürnberg, 1980

[6] Sattes U., “Best Chebyshev approximation by smooth functions”, Quantitative Approximation, Proc. Internat. Symposium (Bonn, 1979), eds. eds. R.A. Devore and K. Scherer, Acad. Press, New York, 1980, 279–289 | DOI | MR

[7] Brown A.L., “Best approximation by smooth functions and related problems”, Parametric optimization and approximation, Proc. Conf. Held at the Mathematisches Forschungsinstitut (Oberwolfach, 1983), Internat. Schriftenreihe. Numer. Math., 72, Birkhäuser, Basel, 1985, 70–82 | DOI | MR

[8] Oram J. A., “Best approximation by periodic smooth functions”, J. Approx. Theory., 92:1 (1998), 128–166 | DOI | MR | Zbl

[9] de Boor C., “A remark concerning perfect splines”, Bull. Amer. Math. Soc., 80:4 (1974), 724–727 | DOI | MR | Zbl

[10] Goodman T. N. T., Lee S. L., “Another extremal property of perfect splines”, Proc. of Amer. Math. Soc., 70:2 (1978), 129–135 | MR | Zbl