The connection between infinite-dimensional stochastic problems and problems for probabilistic characteristics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 191-205 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the connection between the Cauchy problem for infinite-dimensional quasi-linear stochastic equations with multiplicative Wiener process and the (direct and inverse) Cauchy problems for the corresponding deterministic partial differential equations (with Fréchet derivatives). For Markov processes given by stochastic equations, we prove the existence of two limits defined in terms of densities of transition probabilities; these limits generalize to the general case the average values and covariances of these processes. A partial differential equation, which is an infinite-dimensional analog of the Kolmogorov equation, is obtained for probabilistic characteristics of the processes with coefficients defined by these limits. The fact that the solutions of the stochastic differential equations are infinite-dimensional has a profound effect on the expressions for the limits and for the obtained partial differential equations. The form of these expressions is different as compared to the finite-dimensional case: the equations contain a smooth potential, which, in a sense, plays the role of test functions in the equations considered as generalized ones.
Keywords: stochastic Cauchy problem, Q-Wiener process, Markov process, semigroup generator, Kolmogorov equation.
@article{TIMM_2017_23_3_a16,
     author = {I. V. Mel'nikova and U. A. Alekseeva and V. A. Bovkun},
     title = {The connection between infinite-dimensional stochastic problems and problems for probabilistic characteristics},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {191--205},
     year = {2017},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a16/}
}
TY  - JOUR
AU  - I. V. Mel'nikova
AU  - U. A. Alekseeva
AU  - V. A. Bovkun
TI  - The connection between infinite-dimensional stochastic problems and problems for probabilistic characteristics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 191
EP  - 205
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a16/
LA  - ru
ID  - TIMM_2017_23_3_a16
ER  - 
%0 Journal Article
%A I. V. Mel'nikova
%A U. A. Alekseeva
%A V. A. Bovkun
%T The connection between infinite-dimensional stochastic problems and problems for probabilistic characteristics
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 191-205
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a16/
%G ru
%F TIMM_2017_23_3_a16
I. V. Mel'nikova; U. A. Alekseeva; V. A. Bovkun. The connection between infinite-dimensional stochastic problems and problems for probabilistic characteristics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 191-205. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a16/

[1] Allen E.J., Modeling with Ito stochastic differential equations, Springer, Berlin, 2007, 228 pp. | MR | Zbl

[2] Gardiner C.W., Handbook of stochastic methods, Springer-Verlag, Berlin; Heidelberg; New York, 2004, 440 pp. | MR

[3] Shreve S.E., Stochastic calculus for Finance II, Springer Finance, Berlin; Heidelberg; London, 2004, 550 pp. | MR | Zbl

[4] Da Prato G., Zabczyk J., Stochastic equations in infinite dimensions, Cambridge Univ. Press, Cambridge, 2014, 380 pp. | MR | Zbl

[5] Gawarecki L., Mandrekar V., Stochastic differential equations in infinite dimensions, Springer, Berlin, 2011, 292 pp. | MR | Zbl

[6] Melnikova I.V., Stochastic cauchy problems in infinite dimensions. Regularized and generalized solutions, CRC Press, Taylor Francis Group, Boca Raton; London, 2016, 300 pp. | MR | Zbl

[7] Carmona R., Tehranchi M., Interest rate models: an infinite dimensional stochastic analysis perspective, Springer, Berlin; Heidelberg; New York, 2006, 235 pp. | MR | Zbl

[8] Bulinskii A.V., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 400 pp.

[9] Melnikova I.V., Parfenenkova V.S., “Relations between stochastic and partial differential equations in Hilbert spaces”, Int. J. Stoch. Anal., 2012, Article ID 858736 | DOI | MR

[10] Rozanov Yu.A., Sluchainye protsessy (kratkii kurs), Nauka. Glavnaya redaktsiya fiz-mat. lit-ry, M., 1971, 228 pp. | MR

[11] Hille E., Phillips R.S., Functional analysis and semi-groups, Rev. ed., Ser. Amer. Math. Soc. Coll. Publ., 31, American Mathematical Society, Providence, 1957, 810 pp. | MR