On automorphisms of a distance-regular graph with intersection array 69,56,10;1,14,60
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 182-190
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\Gamma$ be a distance-regular graph of diameter 3 with eigenvalues $\theta_0>\theta_1>\theta_2>\theta_3$. If $\theta_2=-1$, then the graph $\Gamma_3$ is strongly regular and the complementary graph $\bar\Gamma_3$ is pseudogeometric for $pG_{c_3}(k,b_1/c_2)$. If $\Gamma_3$ does not contain triangles and the number of its vertices $v$ is less than 800, then $\Gamma$ has intersection array $\{69,56,10;1,14,60\}$. In this case $\Gamma_3$ is a graph with parameters (392,46,0,6) and $\bar \Gamma_2$ is a strongly regular graph with parameters (392,115,18,40). Note that the neighborhood of any vertex in a graph with parameters $(392,115,18,40)$ is a strongly regular graph with parameters $(115,18,1,3)$, and its existence is unknown. In this paper, we find possible automorphisms of this strongly regular graph and automorphisms of a distance-regular graph with intersection array $\{69,56,10;1,14,60\}$. In particular, it is proved that the latter graph is not arc-transitive.
Keywords: distance-regular graph, automorphism of a graph.
@article{TIMM_2017_23_3_a15,
     author = {A. A. Makhnev and M. S. Nirova},
     title = {On automorphisms of a distance-regular graph with intersection array 69,56,10;1,14,60},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {182--190},
     year = {2017},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a15/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - M. S. Nirova
TI  - On automorphisms of a distance-regular graph with intersection array 69,56,10;1,14,60
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 182
EP  - 190
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a15/
LA  - ru
ID  - TIMM_2017_23_3_a15
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A M. S. Nirova
%T On automorphisms of a distance-regular graph with intersection array 69,56,10;1,14,60
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 182-190
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a15/
%G ru
%F TIMM_2017_23_3_a15
A. A. Makhnev; M. S. Nirova. On automorphisms of a distance-regular graph with intersection array 69,56,10;1,14,60. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 182-190. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a15/

[1] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin; Heidelberg; New York, 1989, 495 pp. | DOI | MR | Zbl

[2] Makhnev A.A., Paduchikh D.V., Samoilenko M.S., “Avtomorfizmy grafa s massivom peresechenii {115,96,30,1;1,10,96,115}”, Dokl. RAN, 459:2 (2014), 149–153 | DOI | MR | Zbl

[3] Makhnev A.A., Samoilenko M.S., “Avtomorfizmy silno regulyarnogo grafa s parametrami (276,75,10,24)”, Dokl. RAN, 457:5 (2014), 516–519 | DOI | MR | Zbl

[4] Makhnev A.A., Ponomarev D.N., “Avtomorfizmy silno regulyarnogo grafa s parametrami (392,115,18,40)”, Dokl. RAN, 460:1 (2015), 18–21 | DOI | Zbl

[5] Behbahani M., Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311:2–3 (2011), 132–144 | DOI | MR | Zbl

[6] Cameron P., Permutation Groups, Cambridge Univ. Press, London, 1999, 220 pp. | MR | Zbl

[7] Gavrilyuk A.L., Makhnev A.A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii {56,45,1;1,9,56}”, Dokl. RAN, 432:5 (2010), 512–515

[8] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sibirean Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl