Voir la notice du chapitre de livre
@article{TIMM_2017_23_3_a15,
author = {A. A. Makhnev and M. S. Nirova},
title = {On automorphisms of a distance-regular graph with intersection array 69,56,10;1,14,60},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {182--190},
year = {2017},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a15/}
}
TY - JOUR AU - A. A. Makhnev AU - M. S. Nirova TI - On automorphisms of a distance-regular graph with intersection array 69,56,10;1,14,60 JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 182 EP - 190 VL - 23 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a15/ LA - ru ID - TIMM_2017_23_3_a15 ER -
A. A. Makhnev; M. S. Nirova. On automorphisms of a distance-regular graph with intersection array 69,56,10;1,14,60. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 182-190. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a15/
[1] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin; Heidelberg; New York, 1989, 495 pp. | DOI | MR | Zbl
[2] Makhnev A.A., Paduchikh D.V., Samoilenko M.S., “Avtomorfizmy grafa s massivom peresechenii {115,96,30,1;1,10,96,115}”, Dokl. RAN, 459:2 (2014), 149–153 | DOI | MR | Zbl
[3] Makhnev A.A., Samoilenko M.S., “Avtomorfizmy silno regulyarnogo grafa s parametrami (276,75,10,24)”, Dokl. RAN, 457:5 (2014), 516–519 | DOI | MR | Zbl
[4] Makhnev A.A., Ponomarev D.N., “Avtomorfizmy silno regulyarnogo grafa s parametrami (392,115,18,40)”, Dokl. RAN, 460:1 (2015), 18–21 | DOI | Zbl
[5] Behbahani M., Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311:2–3 (2011), 132–144 | DOI | MR | Zbl
[6] Cameron P., Permutation Groups, Cambridge Univ. Press, London, 1999, 220 pp. | MR | Zbl
[7] Gavrilyuk A.L., Makhnev A.A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii {56,45,1;1,9,56}”, Dokl. RAN, 432:5 (2010), 512–515
[8] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sibirean Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl