Voir la notice du chapitre de livre
Mots-clés : Delaunay triangulations.
@article{TIMM_2017_23_3_a14,
author = {K. S. Kobylkin},
title = {Computational complexity for the problem of optimal intersections of straight line segments by disks},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {171--181},
year = {2017},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a14/}
}
TY - JOUR AU - K. S. Kobylkin TI - Computational complexity for the problem of optimal intersections of straight line segments by disks JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 171 EP - 181 VL - 23 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a14/ LA - ru ID - TIMM_2017_23_3_a14 ER -
K. S. Kobylkin. Computational complexity for the problem of optimal intersections of straight line segments by disks. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 171-181. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a14/
[1] P. K. Agarwal, A. Efrat, S. K. Ganjugunte, D. Hay, S. Sankararaman, G. Zussman, “The resilience of WDM networks to probabilistic geographical failures”, IEEE/ACM Trans. on Networking, 21:5 (2013), 1525–1538 | DOI
[2] E. M. Arkin, A. F. Anta, J. S. Mitchell, M. A. Mosteiro, “Probabilistic bounds on the length of a longest edge in Delaunay graphs of random points in d dimensions”, Comput. Geom., 48:2 (2015), 134–146 | DOI | MR | Zbl
[3] B. K. Bhattacharya, S. Jadhav, A. Mukhopadhyay, J. M.Robert, “Optimal algorithms for some intersection radius problems”, Computing, 52:3 (1994), 269–279 | DOI | MR | Zbl
[4] P. Bose, J. L. Carufel, S. Durocher, P. Taslakian, “Competitive online routing on Delaunay triangulations”, Algorithm theory - SWAT 2014: Proc., Lecture Notes in Comput. Sci., 8503, Springer, Cham, 2014, 98–109 | DOI | MR | Zbl
[5] Bose P., Kirkpatrick D. G., Li Z., “Worst-case-optimal algorithms for guarding planar graphs and polyhedral surfaces”, Comput. Geom., 26:3 (2003), 209–219 | DOI | MR | Zbl
[6] Chan T. M., Grant E., “Exact algorithms and APX-hardness results for geometric packing and covering problems”, Comput. Geom., 47:2 (2014), 112–124 | DOI | MR | Zbl
[7] Hasegawa T., Masuyama S., Ibaraki T., “Computational complexity of the m-center problems on the plane”, Trans. of the Institute of Electronics and Communication Engineers of Japan. Section E, E64:2 (1981), 57–64
[8] Marx D., “Efficient approximation schemes for geometric problems?”, Algorithms - ESA 2005: Proc., Lecture Notes in Comput. Sci., 3669, Springer, Berlin; Heidelberg, 2005, 448–459 | DOI | MR | Zbl
[9] Quanrud K., Har-Peled S., “Approximation algorithms for polynomial-expansion and low-density graphs”, Algorithms - ESA 2015: Proc., Lecture Notes in Comput. Sci., 9294, Springer, Berlin; Heidelberg, 2015, 717–728 | DOI | MR | Zbl
[10] O'Rourke J., Art gallery theorems and algorithms, Oxford University Press, Oxford, 1987, 282 pp. | MR | Zbl
[11] I. Stojmenovic, J. Urrutia, P. Bose, P. Morin, “Routing with guaranteed delivery in ad hoc wireless networks”, Wireless Networks, 7:6 (2001), 609–616 | DOI | Zbl
[12] Tamassia R., Tollis I. G., “Planar grid embedding in linear time”, IEEE Trans. Circuits and Systems, 36 (1989), 1230–1234 | DOI | MR