Voir la notice du chapitre de livre
@article{TIMM_2017_23_3_a13,
author = {A. V. Kel'manov and A. V. Motkova and V. V. Shenmaier},
title = {Approximation scheme for the problem of weighted 2-partitioning with a fixed center of one cluster},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {159--170},
year = {2017},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a13/}
}
TY - JOUR AU - A. V. Kel'manov AU - A. V. Motkova AU - V. V. Shenmaier TI - Approximation scheme for the problem of weighted 2-partitioning with a fixed center of one cluster JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 159 EP - 170 VL - 23 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a13/ LA - ru ID - TIMM_2017_23_3_a13 ER -
%0 Journal Article %A A. V. Kel'manov %A A. V. Motkova %A V. V. Shenmaier %T Approximation scheme for the problem of weighted 2-partitioning with a fixed center of one cluster %J Trudy Instituta matematiki i mehaniki %D 2017 %P 159-170 %V 23 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a13/ %G ru %F TIMM_2017_23_3_a13
A. V. Kel'manov; A. V. Motkova; V. V. Shenmaier. Approximation scheme for the problem of weighted 2-partitioning with a fixed center of one cluster. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 159-170. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a13/
[1] Kelmanov A. V., Romanchenko S. M., “FPTAS dlya odnoi zadachi poiska podmnozhestva vektorov”, Diskretnyi analiz i issledovanie operatsii, 21:3 (2014), 41–52 | Zbl
[2] Kelmanov A. V., Khandeev V. I., “Polnostyu polinomialnaya approksimatsionnaya skhema dlya spetsialnogo sluchaya odnoi kvadratichnoi evklidovoi zadachi 2-klasterizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 56:2 (2016), 332–340 | DOI | Zbl
[3] Kel'manov A. V., Motkova A. V., “A fully polynomial-time approximation scheme for a special case of a balanced 2-clustering problem”, Proc. Internat. Conf. on Discrete Optimization and Operations Research (DOOR 2016), Lecture Notes Comp. Sci., 9869, 2016, 182–192 | DOI | MR
[4] A. Aggarwal, H. Imai, N. Katoh, S. Suri, “Finding k points with minimum diameter and related problems”, J. Algorithms, 12:1 (1991), 38–56 | DOI | MR | Zbl
[5] Kelmanov A. V., Pyatkin A. V., “NP-polnota nekotorykh zadach vybora podmnozhestva vektorov”, Diskretnyi analiz i issledovanie operatsii, 17:5 (2010), 37–45 | Zbl
[6] Shenmaier V. V., “Reshenie nekotorykh zadach poiska podmnozhestva vektorov s ispolzovaniem diagramm Voronogo”, Diskretnyi analiz i issledovanie operatsii, 23:4 (2016), 102–115 | DOI | MR | Zbl
[7] Kelmanov A. V, Romanchenko S. M., “Psevdopolinomialnye algoritmy dlya nekotorykh trudnoreshaemykh zadach poiska podmnozhestva vektorov i klasternogo analiza”, Avtomatika i telemekhanika, 2012, no. 2, 156–162 | Zbl
[8] Kelmanov A. V., Romanchenko S. M., “Priblizhennyi algoritm dlya resheniya odnoi zadachi poiska podmnozhestva vektorov”, Diskretnyi analiz i issledovanie operatsii, 18:1 (2011), 61–69 | Zbl
[9] Shenmaier V. V., “Approksimatsionnaya skhema dlya odnoi zadachi poiska podmnozhestva vektorov”, Diskretnyi analiz i issledovanie operatsii, 19:2 (2012), 92–100 | MR | Zbl
[10] E. Kh. Gimadi, A. V. Kelmanov, M. A. Kelmanova, S. A. Khamidullin, “Aposteriornoe obnaruzhenie v chislovoi posledovatelnosti kvaziperiodicheskogo fragmenta pri zadannom chisle povtorov”, Sib. zhurn. industr. matematiki, 9:1(25) (2006), 55–74 | MR | Zbl
[11] E. Kh. Gimadi, A. V. Kel'manov, M. A. Kel'manova, S. A. Khamidullin, “A posteriori detecting a quasiperiodic fragment in a numerical sequence”, Pattern Recognition and Image Analysis, 18:1 (2008), 30–42 | DOI
[12] Kelmanov A. V., Pyatkin A. V., “O slozhnosti nekotorykh zadach poiska podmnozhestv vektorov i klasternogo analiza”, Zhurn. vychisl. matematiki i mat. fiziki, 49:11 (2009), 2059–2065 | MR | Zbl
[13] A. E. Baburin, E. Kh. Gimadi, N. I. Glebov, A. V. Pyatkin, “Zadacha otyskaniya podmnozhestva vektorov s maksimalnym summarnym vesom”, Diskretnyi analiz i issledovanie operatsii, 14:1 (2007), 32–42 | Zbl
[14] Gimadi E. Kh., Pyatkin A. V., Rykov I. A., “O polinomialnoi razreshimosti nekotorykh zadach vybora podmnozhestva vektorov v evklidovom prostranstve fiksirovannoi razmernosti”, Diskretnyi analiz i issledovanie operatsii, 15:6 (2008), 11–19 | Zbl
[15] Gimadi E. Kh., Glazkov Yu. V., Rykov I. A., “O dvukh zadachakh vybora podmnozhestva vektorov s tselochislennymi koordinatami v evklidovom prostranstve s maksimalnoi normoi summy”, Diskretnyi analiz i issledovanie operatsii, 15:4 (2008), 30–43 | Zbl
[16] Kelmanov A. V., Khandeev V. I., “Tochnyi psevdopolinomialnyi algoritm dlya odnoi zadachi dvukhklasternogo razbieniya mnozhestva vektorov”, Diskretnyi analiz i issledovanie operatsii, 22:4 (2015), 50–62 | DOI | Zbl
[17] Dolgushev A. V., Kelmanov A. V., “Priblizhennyi algoritm resheniya odnoi zadachi klasternogo analiza”, Diskretnyi analiz i issledovanie operatsii, 18:2 (2011), 29–40 | MR | Zbl
[18] Dolgushev A. V., Kelmanov A. V., Shenmaier V. V., “Polinomialnaya approksimatsionnaya skhema dlya odnoi zadachi razbieniya konechnogo mnozhestva na dva klastera”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:3 (2015), 100–109
[19] Kelmanov A. V., Khandeev V. I., “Randomizirovannyi algoritm dlya odnoi zadachi dvukhklasternogo razbieniya mnozhestva vektorov”, Zhurn. vychisl. matematiki i mat. fiziki, 55:2 (2015), 335–344 | DOI | Zbl
[20] Kelmanov A. V., Motkova A. V., “Tochnye psevdopolinomialnye algoritmy dlya zadachi sbalansirovannoi 2-klasterizatsii”, Diskretnyi analiz i issledovanie operatsii, 23:3 (2016), 21–34 | DOI | Zbl
[21] Kelmanov A. V., Pyatkin A. V., “NP-trudnost nekotorykh kvadratichnykh evklidovykh zadach 2-klasterizatsii”, Dokl. RAN, 464:5 (2015), 535–538 | DOI | Zbl
[22] Kelmanov A. V., Pyatkin A. V., “O slozhnosti nekotorykh kvadratichnykh evklidovykh zadach 2-klasterizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 56:3 (2016), 498–504 | DOI | Zbl
[23] Aggarwal C. C., Data Mining, The Textbook, Springer International Publishing, Cham, 2015, 734 pp. | MR | Zbl
[24] Bishop C. M., Pattern Recognition and Machine Learning, Springer Science+Business Media, LLC, New York, 2006, 738 pp. | MR | Zbl
[25] Hastie T., Tibshirani R., Friedman J., The Elements of statistical learning: Data mining, inference, and prediction, Springer-Verlag, New York, 2009, 763 pp. | DOI | MR | Zbl
[26] G. James, D. Witten, T. Hastie, R. Tibshirani, An introduction to statistical learning, Springer Science+Business Media, LLC, New York, 2013, 426 pp. | DOI | MR | Zbl
[27] Jain A. K., “Data clustering: 50 years beyond k-means”, Pattern Recognition Lett., 31 (2010), 651–666 | DOI
[28] Wirth N., Algorithms + data structures = programs, Prentice Hall, New Jersey, 1976, 366 pp. | MR | Zbl
[29] Ball K., “An elementary introduction to modern convex geometry. Flavors of geometry”, MSRI Publications, 31, ed. ed. S. Levi, 1997, 1–58 | MR | Zbl