The direct theorem of the theory of approximation of periodic functions with monotone Fourier coefficients in different metrics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 144-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the problem of order optimality of an upper bound for the best approximation in $L_{q}(\mathbb{T})$ in terms of the $l$th-order modulus of smoothness (the modulus of continuity for $l=1$) in $$L_{p}(\mathbb{T})\colon E_{n-1}(f)_{q}\le C(l,p,q)\big(\textstyle\sum\limits_{\nu=n+1}^{\infty}\nu^{q\sigma-1}\omega_{l}^{q}(f;\pi/\nu)_{p}\big)^{1/q},\ \ n\in\mathbb{b}N,$$ on the class $M_{p}(\mathbb{T})$ of all functions $f\in L_{p}(\mathbb{T})$ whose Fourier coefficients satisfy the conditions $$a_{0}(f)=0,\ a_{n}(f)\downarrow 0,\ \text {and}\ b_{n} (f)\downarrow 0\ (n\uparrow \infty),\ \text{where}\ l\in\mathbb{N},\ 1

\infty,\ l>\sigma=1/p-1/q,\ \text{and}\ \mathbb{T}=(-\pi,\pi].$$ For $l=1$ and $p\ge 1$, the bound was first established by P. L. Ul'yanov in the proof of the inequality of different metrics for moduli of continuity; for $l>1$ and $p\ge 1$, the proof of the bound remains valid in view of the $L_{p}$-analog of the Jackson–Stechkin inequality. Below we formulate the main results of the paper. A function $f\in M_{p}(\mathbb{T})$ belongs to $L_{q}(\mathbb{T})$, where $1$, if and only if $\sum_{n=1}^{\infty}n^{q\sigma-1}\omega_{l}^{q}(f;\pi/n)_{p}\infty$, and the following order inequalities hold: (a) $E_{n-1}(f)_{q}+n^{\sigma}\omega_{l}(f;\pi/n)_{p}\asymp\big(\sum\limits_{\nu=n+1}^{\infty}\nu^{q\sigma-1}\omega_{l}^{q} (f;\pi/\nu)_{p}\big)^{1/q}$, $n\in\mathbb{N}$; (b) $n^{-(l-\sigma)}\big(\sum_{\nu=1}^{n}\nu^{p(l-\sigma)-1}E_{\nu-1}^{p}(f)_{q}\big)^{1/p}\asymp \big(\sum\limits_{\nu=n+1}^{\infty}\nu^{q\sigma-1}\omega_{l}^{q}(f;\pi/\nu)_{p}\big)^{1/q}$, $n\in\mathbb{N}$. \noindent In the lower bound in inequality (a), the second term $n^{\sigma}\omega_{l}(f;\pi/n)_{p}$ generally cannot be omitted. However, if the sequence $\{\omega_{l}(f;\pi/n)_p\}_{n=1}^{\infty}$ or the sequence $\{E_{n-1}(f)_{p}\}_{n=1}^{\infty}$ satisfies Bari's $(B_{l}^{(p)})$-condition, which is equivalent to Stechkin's $(S_{l})$-condition, then $$E_{n-1}(f)_{q}\asymp\bigg(\sum_{\nu=n+1}^{\infty}\nu^{q\sigma-1}\omega_{l}^{q}(f;\pi/\nu)_{p}\bigg)^{1/q},\ \ n\in\mathbb{N}.$$ The upper bound in inequality (b), which holds for any function $f\in L_{p}(\mathbb{T})$ if the series converges, is a strengthened version of the direct theorem. The order inequality $(b)$ shows that the strengthened version is order-exact on the whole class $M_{p}(\mathbb{T})$.
Keywords: best approximation, modulus of smoothness, direct theorem in different metrics, trigonometric Fourier series with monotone coefficients, order-exact inequality on a class.
@article{TIMM_2017_23_3_a12,
     author = {N. A. Il'yasov},
     title = {The direct theorem of the theory of approximation of periodic functions with monotone {Fourier} coefficients in different metrics},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {144--158},
     year = {2017},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a12/}
}
TY  - JOUR
AU  - N. A. Il'yasov
TI  - The direct theorem of the theory of approximation of periodic functions with monotone Fourier coefficients in different metrics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 144
EP  - 158
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a12/
LA  - ru
ID  - TIMM_2017_23_3_a12
ER  - 
%0 Journal Article
%A N. A. Il'yasov
%T The direct theorem of the theory of approximation of periodic functions with monotone Fourier coefficients in different metrics
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 144-158
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a12/
%G ru
%F TIMM_2017_23_3_a12
N. A. Il'yasov. The direct theorem of the theory of approximation of periodic functions with monotone Fourier coefficients in different metrics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 144-158. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a12/

[1] Ilyasov N.A., “K pryamoi teoreme teorii priblizhenii periodicheskikh funktsii v raznykh metrikakh”, Tr. MIAN, 219 (1997), 220–234 | Zbl

[2] Stechkin S.B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. mat., 15:3 (1951), 219–242 | MR | Zbl

[3] Timan A.F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960, 624 pp. | MR

[4] Konyushkov A.A., “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Mat. sb., 44(86):1 (1958), 53–84 | MR

[5] Ulyanov P.L., “Teoremy vlozheniya i sootnosheniya mezhdu nailuchshimi priblizheniyami (modulyami nepreryvnosti) v raznykh metrikakh”, Mat. sb., 81(123):1 (1970), 104–131 | Zbl

[6] Kolyada V.I., “O sootnosheniyakh mezhdu modulyami nepreryvnosti v raznykh metrikakh”, Tr. MIAN, 181 (1988), 117–136

[7] Goldman M.L., “Kriterii vlozheniya raznykh metrik dlya izotropnykh prostranstv Besova s proizvolnymi modulyami nepreryvnosti”, Tr. MIAN, 201 (1992), 186–218 | Zbl

[8] Bari N.K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp. | MR

[9] Bari N.K., Stechkin S.B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. mat. ob-va, 5 (1956), 483–522 | Zbl

[10] Lozinskii S.M., “Obraschenie teorem Dzheksona”, Dokl. AN SSSR, 83:5 (1952), 645–647

[11] Zigmund A., Trigonometricheskie ryady, v 2 t., v. 1, Mir, M., 1965, 616 pp. ; 2, 538 с. | MR

[12] Khardi G.G., Littlvud D.E., Polia G., Neravenstva, IL, M., 1948, 456 pp.

[13] Konyushkov A.A., “O nailuchshikh priblizheniyakh pri preobrazovanii koeffitsientov Fure metodom srednikh arifmeticheskikh i o ryadakh Fure s neotritsatelnymi koeffitsientami”, Sib. mat. zhurn., 3:1 (1962), 56–78 | MR | Zbl

[14] Kokilashvili V.M., “O priblizhenii periodicheskikh funktsii”, Tr. Tbilis. mat. in-ta, 34 (1968), 51–81 | Zbl

[15] Aljancic S., “On the integral moduli of continuity in $L_{p}\ (1 p \infty)$ of Fourier series with monotone coefficients”, Proc. Amer. Math. Soc., 17:2 (1966), 287–294 | DOI | MR | Zbl

[16] Zygmund A., “Smooth functions”, Duke Math. J., 12:1 (1945), 47–76 | DOI | MR | Zbl

[17] Timan M.F., “Obratnye teoremy konstruktivnoi teorii funktsii v prostranstvakh $L_{p}~(1\le p\le \infty)$”, Mat. sb., 46(88):1 (1958), 125–132 | Zbl

[18] Timan M.F., “O teoreme Dzheksona v prostranstvakh $L_{p}$”, Ukr. mat. zhurn., 18:1 (1966), 134–137 | MR | Zbl

[19] Ilyasov N.A., “Obratnaya teorema v raznykh metrikakh teorii priblizhenii periodicheskikh funktsii s monotonnymi koeffitsientami Fure”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:4 (2016), 153–162 | MR

[20] Ulyanov P.L., “Vlozhenie nekotorykh klassov funktsii $H_{p}^{\omega}$”, Izv. AN SSSR. Ser. mat., 32:3 (1968), 649–686 | Zbl

[21] Storozhenko E.A., “Teoremy vlozheniya i nailuchshie priblizheniya”, Mat. sb., 97(139):2(6) (1975), 230–241 | MR | Zbl